R =1 ECTE:'

DTIC

Recursive Optimization
of
Digital Circuits

%, JAN 07 1991

D

TIESIS

Eric John IXnutson
Captain, USAF

ATIT/ O IIINC /JonDoN?

r--".....-~-...-‘.m~.-o.

13T e e e e et e

DTSRI 0 e AT
- ATRIENT A

15 REDoves 12; ¢

guni releass !

\ . Dlsincuneca Usnhisitad $

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio




AFIT/GCE/ENG/90D-03

DTIC
ELECTE
JAN 077 1991

D

Recursive Optimization
of
Digital Circuits

THESIS

Eric John Knutson
Captain, USAF

AFIT/GCE/ENG/90D-03

Approved for public release; distribution unlimited




AFIT/GCE/ENG/90D-03

Recursive Optimization of Digital Circuits

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the

Requirements for the Degree of

Accesion For

Master of Science in Computer Engineering NTIS CRAGI é
DTIC TAB 1
Uiiannou. :ced ]
Justificztion
By

Di:t ibution/

Eric John Knutson, B.S.E.E. . - .
Availabitity Codes

Captain, USAF

[ Avan a 4 | or
Dist JSpecial

December 14, 1990 QA ’I '

Approved for public release; distribution unlimited




Acknowledgments

I would like to dedicate this thesis to my wife, Leah, for the countless sacrifices she
made on my behalf. For without her continual love and support, none of this would have
been possible. I would like to thank Captain James Kainec for always being there to
answer all my questions, no matter how moronic they were. I would like to thank the
members of my committee, Doctor Matthew Kabrisky and Captain Robert Hammell II for
reviewing this thesis and adding their constructive comments. I would especially like to
thank Doctor Frank Brown, my thesis advisor, for his guidance and support throughout
this research effort. Thoug! the task seemed insurmountable at times, he provided the
positive reinforcement to xeep r-e going. Finally, I would like to thank my parents, Bernie
and June. They instilled in me the conviction to pursue my goals and to never settle for
second best. They have always been there when I needed them and certainly deserve to

share in any of my accomplishments.

Eric John Knutson

ji




Table of Contents

Page

Ackaowledgments . ... ......... e e e e e e ii
Table of Contents . ........ e e e e e . e iii
Listof Figures . ... ... ... et e e ix
Listof Tables . ........... 0000, e e e e e X
Abstract . ..... ... . oL e e e e e e e e e xi
L Introduction ......... e e e e e e e e e e 1-1
1.1 Background . .. v v v v i e e e e e 1-1

1.2 Statement of the Problem .. .................. 1-2

1.3 Research Objectives . . ... .. ... ... . 1-2

14 Scope v v vttt e e e e e e e e e 1-3

1.5 Assumptions . . . v v v v v i vt i i e e e e e 1-4

16 Standards . . . . . v i e e e e e e 1-4

1.7 Approach/Methodology ... ......... e e e e 1-5

1.8 Maximum Expected Gain .. .............. Ce e 1-6

1.9 Overview .. .. v i it it it i e e RN 1-6

II.  Review of Important Boolean Concepts .. ................ 2-1
2.1 Fundamentals of a Boolean Algebra . ............. 2-1

2.1.1 Postulates for a Boolean Algebra.. . . ........ 2-1

2.1.2 The Inclusion Relation. . ............... 2-2

2.1.3 Some Useful Properties. . .. ............. 2-3

2.1.4 Equivalent Boolean Equations. . ........... 2-5

iii




2.1.5 Boole’s Expansion Theorem. ............. 2-6
2.2 Boolean Functions and Formulas . .. ......... Cees 2-6
2.2.1 WhatIs A Boolean Function?. . ... ........ 2-6
2.2.2 Boolean Function Representation. .......... 2-7
2.2.3 Relationships Among Variables.. . . . . ... .... 2-8
2.24 CanonicalForms.............. e e 2-9
2.3 Boolean System .............. 2-11

2.3.1 What Is A Boolean System? ............. 2-11

2.3.2 Boolean Reduction. ............ e 2-12

III.  Overview of Digital Circuit Optimization Techniques ... ....... 3-1
3.1 The Motivation for Optimizing Digital Circuits . . . . . . ‘e 3-1

3.2 Two-Level Optimization Techniques . ... ...... cee 3-4

3.2.1 Boolean Simplification. . ........... ..., 3-4

3.2.2 Karnaugh Map Technique. . .......... ce e 3-5

3.2.3 Quine-McCluskey Method. . ... .......... 3-7

3.2.4 Programmable Logic Array Minimization ... ... 3-8

3.2.5 Summary of Two-Level Optimization Techniques. . 3-14

3.3 Multi-Level Optimization Techniques. . . . ... .... ce e 3-14

3.3.1 Local Optimization. . . ... ... .......... 3-16

3.3.2 Global Optimization.. . . .. ... .... e e 3-24

34 Summary . ... i it e e e e e ce e 3-44

IV.  Recursive Realizations of Combinational Logic Circuits . ........ 4-1
4.1 Introduction ............ .. .. ... Cee s 4-1

4.2 Recursive Realizations . . . ... ... ... . ..., ..... 4-2

4.3 A Recursive Optimization System . .............. 4-4

4.4 Specifications . . . ... .. o e e e . 4-4




4.5
4.6

4.7
4.8
4.9

4.4.1 Complete Specifications. . . . . ......... e
4.4.2 Tabular Specifications. . . . . ... ......... .
System Reduction ............ e e e N
Dependency Analysis . . .. ... vvie v .
4.6.1 Redundancy Elimination Technique. . .. ... ...
4.6.2 Opposing Literals Technique. . .. ... ... e
Assigning Coststothe MDSs . . . .. .............
Search for the Least-Cost Recursive Solution . ........

Summary ..... e e e e e e e e e e

V.  Building a Recursive Circuit Optimization System . ...........

5.1
5.2
5.3
5.4
5.5
5.6

Introduction .............. e
Selection of a Programming Language . . ...........
Modeling a General Circuit-Optimization System . . .. ...
Developing A Recursive Circuit Optimization System
Modification of the BORIS- Muiti-Level Design System .

Summary ...... e e e e e e e e e

VI.  Detailed Problem Analysisand Design .. ................

6.1
6.2
6.3

6.4

Introduction .......... e e e e e e
Performance of the BORIS Optimizaticn System . ... ...
Integrating-a Tabular Design Module. . . . ..........
6.3.1 Tabular Design Filter. . . ... ............
6.3.2 Non-Tabular to Tabular Conversion Algorithm. . . .
Improving the Efficiency of our System . ...........
6.4.1 TheParseModule.. ............... L
6.4.2 The Minimal Determining Subset Module.. . . . . .

643 TheSearchModute ..................

Page
4-6
4-7
4-9
4-9

4-10

4-17

4-20

4-21
4-27

5-1

5-1
5-3

5-5

5-8

6-1

6-1

6-3
6-4

6-5
6-8

6-13




Page
6.4.4 The BORIS Design Tools Module. .. ........ 6-18

6.5 Finding an Optimal Solution ... ... e e 6-19
66 Summary .......... et e e 6-20
VII. Summary of Results .. ...... L e e e e e e e 7-1
7.1 Introduction .......... e e e e 7-1
7.2 A Typical Optimization Session . . . . . .. .. v v vt 7-1
7.3 The Performance of the Tabular Design Module ... .. - 7-4
7.4 Improvements to the Optimization System Efficiency . . . . . 7-4
7.4.1 Preliminary Testing. . . ... ..... e e 7-4

7.4.2 The Modified Parsing System. ............ 7-6

7.4.3 Comparing the MDS Algorithms. . . . ... .. ... 7-7

7.44 Evaluating the Modified Search Algorithm. . ... . 7-8

7.4.5 Summary of Efficiency Upgrades. . . . . . .. e 7-8

7.5 The Results of Optimization . . ... ............. 7-9
7.6 Improving the Optimization Results . . ............ 7-9
7.7 Other Noteworthy Observations ... .... e e e . 7-11
7.8 SUMMATY . & ¢ v v v v v vt e e e e ot s ot ot a s e e 7-11
VIII. Conclusions and Recommendation:. ... ....... e 8-1
81 SUMMATY . . v v v v vt vttt ot b e s ot oo 8-1
8.2 Specific Accomplishments . . ... .... .......... 8-2
8.2.1 The System Efficiency Was Improved. . ... .. .. 8-2

8.2.2 A Tabular Design Filter Was Constructed. ... .. 8-2

8.2.3 Further Optimization Was Achieved. . . . ... ... 8-2

8.3 Recommendations .. .......... ... .. ..., 8-3

84 Conclusion . ... ... .t v e e e e e 8-4




Appendix A. Selected Listingsof Results .. ................ A-1
A.1 Recursive Optimizationof CKT1 .. .............. A-1
A.2 Recursive Optimizationoit CKT2 . . . ... ... ....... A-2
A.3 Recursive Optimizationof CKT3 . . ... .......... A-3
A.4 Recursive Optimizationof CKT4 . .. ............. A-4
A.5 Recursive Optimizationof CKT5 . . . ... ... ... .... A-6
A.6 Recursive Optimization of WSU-CKT . ............ A-10
A.7 Recursive Optimization of EXAMPLE . . . ... ... .... A-11
A.8 Recursive Optimization of SAMPLE . . .. ... ....... A-13
A.9 Recursive Optimization of EX-951 . . ... .......... A-15
A.10 Recursive Optimizationof BCDTO3 . . .. ... ... .... A-17
A.11 Optimization of NONTAB1 — a Non-Tabular Spec. .. ... A-20

A.12 Optimization of CKT?2 Using Its Cbverse Specification . . . . A-22
A.13 Optimization of EX-951 Using Its Obverse Specification . . . A-23

A.14 Non-MDS Optimization of SAMPLE . . .. .......... A-24
Appendix B. BORIS Recursive Optimization System Software . ... .. B-1
B DESIGNS File . . oo oo v v i it i i e B-2
B2 PARSESSFile...... ... 0. B-11
B.3 TABULARSFile ... .. ... ... i, B-22
B4 MDSSFile . .....0 i ity B-28
B5 COSTSFile .......... ... i, B-49
B.6 SEARCHSFile ............ ... .. B-53
B.7 DATASFile . ... .. it iie i B-62
B.8 TOOLSSFile ........... .. ... ... P B-66
B9 NEWDSGN.SFile. .. ......... ... ... .. B-108
B.IONONMDS.SSFile. . .. ... .. v iii i B-116

vii




Bibliography . ..........

Vita .

viii

L T S T S S O I I I I

R T T R S Y

D I

Page
BIB-1

VITA-1




List of Figures

Figure Page
2.1. Euler Diagram ....... e 2-3
2.2. Circuit Implementation of f(z,y,2z) =zy'z+2pz4+2y .. ... Cee 2-7
2.3. Venn Diagram for f(z,y,2)=zy'z+zyz+2y . . ... oo oo 2-9
3.1. Circuit Implementation of f(z,y,2)=ay'+z2..... .. ... Cee 3-6
3.2. Karnaugh Map for zy'z+ zyz+oy' =y’ +2z2. . . .. .. ... ... 3-7
3.3. A Standard PLA Implementation ... .................. 3-9
3.4. Tv.o-Level versus Multi-Level Logic .. ............ ... ... 3-15
3.5. A Local Transformation Rule Txample ......... REEERERER 3-18
3.6. DAS/Logic Design Level Hietarchy . . . . . e e .‘ ..... Ce e 3-21
3.7. Multi-Level Boolean Network . . . . .. v v v vt vt n e e 3-25
3.8. Decision-Grephsand BDDs . . .. ... .. .. e e e 3-27
3.9. Overview of SOCRATES System . . . . .. v v v v v v v v e v v v v v v 3-41
4.1, Multiple-Output Circuit. . . . . e e e e e 4-2
4.2. Recursive Realization of Combinational Logic. . . . .. .. ... ... 4.3
4.3. Specification Forms For An AND-Gate .................. 4-5
4.4. The Cost Based on Gate Inputs . ... . e e e e 4-20
4.5. Traversing the State Space Using Best-First Search .. ......... 4-25
4.6. Recursive Realization ...................... P 4-27
5.1. A General Circuit Optimization System . . ................ 5-4
52. DataFlowDiagram ... ....... ... 5-6
5.3. The BORIS Multi-Level Design'System . . ... ............. 5-7
7.1. The Original Run-Time Distribution. . . . ... ........ c v 7-5

7.2. The Run-Time Distribution For Our Upgraded System ......... 7-12




Table

2.1.
2.2.

4.1.
4.2,
4.3.
4.4.

7.1.
7.2,

=~
w

7.4,
7.5.

List of Tubles

Page
Truth Table for f(z,y )=ay'z+azyz+zy .. ... ... ..., N 2-8
Minterms for Three Binayy Variables ... ... ............. 2-10
Incomplete Specification. . . . ... ... . o oo 4-6
Development of Maximal Redundancy Subsets . . . ... ........ 4-12
Minimal Determining Subsets zad Associated Intervals . ... ... .. 4-13
Minimal Determining Sets and Associated Costs . . ... ........ 4-21
Efficiency of Original BORIS Optimization System . . . . ... ... .. 7-5
Speed of Original Parser versus Updated Parser ... .......... 7-6
A Comparison of MDS Algorithm Run-Times . . . . . ... ... .. .. 7-7
Speed of Original System versus Upgraded System . . . . ... ..... 7-9

Gate-Input Cost Before and After Optimization . ............ 7-10




AFIT/GCE/ENG/90D-03

Aoustract

The goal of this thesis is twofold: first, to identify the advantages and disadvantages
of existing optimization systems and second, to develop an optimization system that uses
Boolean principles to generate a recursive realization of combinational logic. Current
multi-level optimization systems fall into two categories: local optimization which removes
redundancy by pattern matching on a local scale and global optimization which works
with the equations that specify a circuit rather than with the circuit implementation itself.
While global systems are very flexible and can produce near-optimal solutions, they are
inherently complex. This research effort demonstrates that an effective global optimization
system can be built upon sound Boolean principles. A recursive optimization system
built in Scheme was thoroughly- evaluated. The system achieved gate-input reductions as
high as 52 percent. Subsequent modifications targeted improving the system’s speed and
effectiveness. As a result of these efforts, the optimization speed for a variety of sample

specifications was doubled. Other findings-led to a better understanding of this approach

and showed that it is a viable technique for the optimization of digital circuits. é—-—'




Recursive Optimization of Digital Circuits

I. Introduction

1.1 Background

Since the advent of the first electronic computers back in the early 1940s, scientists
and engineers have sought to develop increasingly complex circuits that are smaller, faster,
and-more reliable than ever before. Because of remarkable advancements in integrated cir-
cuit (IC) technology, computers that used to weigh several tons and occupy entire rooms
can now be found on a single chip. Although progress in semiconductor technology con-
tinues today, it is unlikely that we will see improvements on the order of magnitude that
we have seen over the last 40 years. As a result, the emphasis is shifting to finding optimal
or near-optimal-circuit designs which reduce cost (circuit area), propagation delay (speed)

or a desired combination of both.

Optimizing digital logic circuits-makes even more sense when we consider that typ-
ically “twenty to 50 percent of the active area of most semi-custom integrated circuits
is devoted to combinational logic (31).” Over the years many different approaches have
been taken in the development of efficient algorithms for logic synthesis and optimization.
Despite considerable progress, the synthesis of non-trivial, digital circuits (deciding how
to partition the logic, in what form to implement pieces of the logic, and what layout style

to use) is still largely a manual process (14).

The long-term goal of logical design is to build a system that will accept a functional
specification for a logic network and automatically generate an optimal, technology-specific
implementation that is comparable in quality to that of an experienced designer. Accord-
ing to Karen Bartlett, “automating the synthesis-and optimization of combinational logic
reduces the design time, improves the size and speed of the circuitry and guarantees func-

tional correctness (5).”

This realization, coupled with the increasing availability of Comput~r-Aided Design

(CAD) tools and new Artificial Intelligence (AI) techniques, has caused research into auto-
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matic synthesis and optimization of digital circuits to blossom over the last decade. With
these tools in hand and ideas in mind, one can address the problems that have hindered

the development of an ideal logic optimization system.

1.2 Statement of the Problem

Despite remarkable gains in the past few years, there is still a tremendous need for
an efficient, general-purpose algorithm to optimize multi-output logic circuits. Current
algorithms fall into two categories: local optimization, which removes redundancy by pat-
tern matching on a lo~al scale, and global optimization, which works with the equations
that specify a system rather than the circuit implementation itself. Global optimization
is potentially more powerful than local techniques, but it is also inherently complex and
currently quite slow in comparison (77). It is imperative that we develop a further un-
derstanding of available state-of-the-art logic optimization techniques and-the principles of
Boolean reasoning if we hope to improve some of the deficiencies associated with a glotal

approach.

1.3 Research Objectives

To overcome some of the problems associated with the global optimization of multi-

level logic circuits, each of the following research objectives will be addressed:

o To analyze, compare and contrast the current state-of-the-art techniques in circuit

synthesis and optimization.

¢ To identify current areas of active research including the use of Al principles, simu-
lated annealing, binary decision diagrams, and Boolean reasoning methodologies to

solve the problem.

o To investigate the idea of a recursive realization of a combinational logic circuit,

which takes advantage of existing signals to produce new ones.

e To develop a simple, recursive optimization system thet uses global methodologies

and is built on a sound theoretical foundation.

it




o To explore new search strategies, heuristics, and Boolean reasoning techniques, de-

signed to improve the speed and effectiveness of our optimization system.

¢ To make recommendations based on the experience accumulated.

1.4 Scope

To keep the scope of this research effort at a manageable level, several limitations were
imposed. The effort was focused on the design and development of a global optimization
system that generates a recursive realization of combinational logic. It was built utilizing
the reasoning-toolset BORIS (Boolean Reasoning In Scheme) developed by F.M. Brown
at the Air Force Institute of Technology (-* FIT) (22). It was designed to accept a set of
Boolean equations defining the behavior of a multiple-output, combinational circuit and
return a set of equations that satisfies the specification at a reduced cost. The circuit
optimization process will not target a particular implementation technology. In other
words, our reduced equations will map directly into circuits consisting of AND, OR and
NOT gates. The results of this research effort could be extended to include optimization

around a particular technology at some future date.

This research addresses an innovative new approach to optimization that generates
a recursive realization of combinational logic (22). It involves performing a dependency
analysis to determine minimal subsets of inputs and outputs that can be used to generate
a given output; these sets are called minimal determining subsets and are described in
further detail later. While this technique is quite successful in reducing the cost of numer-
ous circuits, it is currently computationally intensive and doesn’t always find an optimal
solution. Our goal was to evaluate and improve the speed and accuracy of the recursive
optimization system that was developed using the BORIS toolset. At the same time, an
effort was-made to modify several aspects of the BORIS toolset to make it more versatile
in its ability to-handle equations of any practical form and size. The completion criterion
for this endeavor would be achieved when we finished the development of this-optimization
system, compare its eflectiveness to other current systems and draw conclusions based on

the results.
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1.5 Assumptions

We assume that the reader has a basic understanding of Boolean algebra and fun-
damental circuit design techniques. If that is not the case, there are a variety of good
sources available including Digital Logic and Computer Design by M. Morris Mano (73)
and Boolean Reasoning by Dr. Frank M. Brown (22). We will build upon some of these

fuadamental Boolean principles as required.

Other important assumptions were that the optimization algorithm has a sound the-
oretical basis with results that are verifiable. While the results should be verifiable, no
attempt was made to formally prove such is the case. The system was initially developed
on an IBM-compatible, personal computer with plans to eventually port it over to a faster,
workstation or minicomputer sometime in the future. No attempt was be made to ad-
dress every aspect of global optimization, but rather the key issues, as the,y apply to our

objectives, were brought to light.

To simplify the optimization task, but by no means to diminish their importance,

several other assumptions were - made (66):

o The final, optimized circuit consisted of AND, OR and NOT gates with no attempt

made to adapt it to an alternative technology.

All circuit components were considered to be “ideal”, consisting of a unit delay.

Limitations were not placed on the ultimate shape of the circuit.

Any constraints on the maximum propagation delay-through the circuit were ignored.

“Race conditions” that may exist because of an uneven propagation of the signals

through the circuit were ignored.

1.6 Standards

To lend credibility to this research effort, it was imperative that we conduct extensive
tests, comparing our results with ones that have-been previously established. One measure
of our success is obviously the ability of our system to produce circuits with a lower

cost than previously attainable using automated techniques. Another measure of success
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is how much we can improve the speed of our system while not sacrificing any of its
effectiveness. While both of these are important we would ultimately like to compare our
system against other commercial or prototype systems. One way to do this is to use a set
of previously established benchmarks such as the one developed by Aart J. de Geus for the
1986 Design Automation conference (32). Unfortunately our system did not reach the level
of sophistication where a comparison with these benchmarks was possible. For example we
do not map our results into a particular target technology. However, by limiting the scope

of our effort, we were able to concentrate on critical aspects of the optimization system.

Another important consideration was how to measiire the cost of a circuit. Cost can
be measured as a function of the number of gate inputs, the number of gates, the maximum
time delay through the circuit, or a combination of all of these. How cost is calculated is a
function of the intended application of a given circuit. It was important that we establish

some guidelines for determining cost, laying out in detail our specific design criteria.

1.7 Approach/Methodology

The first step in developing an effective global optimization system was to explore how
the current, state-of-the-art optimization systems operate and to analyze new approaches
to this problem. An extensive review of current literature was conducted and culminated
with nearly a hundred, useful sources. Pertinent information gathered from these sources,
as well as a detailed understanding of Boolean reasoning principles, provided the foundation

upon which our global optimization system was eventually developed.

After comparing and contrasting the latest in multi-level optimization systems and
techniques, we focused our efforts on one particular global methodology: the recursive
realization of combinational logic circuits. We established the necessary foundation of
theoretical information that would enable us to intelligently formulate the specific require-
ments necessary to design and develop such a system. We followed this with a more
detailed p:ublem analysis, identifying the specific stages necessary in the development of

our-syste n, and the problems that we were likely to encounter. We addressed such aspects

as the types of computers, search algorithms, heuristics, and other tools that would be




used. We also justified our selection of a particular programming language to solve the

problem.

Once we developed the requirements, and a detailed plan of attack, we were able to
proceed with the development of the software. This phase was broken down into three pri-
mary stages: design, coding, and testing. All three of these stages proceeded concurrently.
The testing stage involved a rigorous validation to determine if the system performed as
expected and to establish its overall credibility. Most of our efforts, concerning the software
development, focused on improving the speed of the global optimization system while not

sacrificing any of its effectiveness.

Finally, it was necessary to evaluate the performance of the modified optimization
system. The results of these tests were tabulated, analyzed, and presented for further
review. We concluded this research effort by summarizing all of the results and presenting

the overall conclusions.

1.8 Maximum Expected Gain

The ultimate goal is to improve our understanding of global optimization techniques
and to make qualified recommendations for the direction this research should take in
the future. Our success will provide a foundation for continued research into this area.
Improved circuit design techniques, will enable us to build inexpensive digital computers

and electronic systems that are smaller, faster, and more accurate than ever before.

1.9 Overview

The present chapter provides a general introduction to the problems associated with
synthesizing optimal digital circuits and the growing importance of this field. It outlines

the overall research objectives along with the scope, assumptions, standards and approach.

Chapter 2 is designed to provide a brief theoretical background on some of the key
principles of Boolean algebra. It reviews a variety of general concepts, some which may

seem familiar, others which may not. Tl.ey are all necessary to provide a basis for further

discussions and more detailed theoretical development.




Chapter 3 provides a summary of the current knowledge in the field. It is based
on an extensive literature review and includes a historical perspective of circuit synthesis
and optimization. It highlights the current state-of-the-art optimization systems, pointing
out their advantages as well as their drawbacks. It introduces and contrasts multi-level
optimization techniques versus the k2tter understood two-level approach. It compares and
contrasts local redesign techniques versus a more flexible global approach. It analyzes a
variety of new approaches to the problem and new tools, including AI techniques, binary

decision diagrams, simulated annealirz, minimal determining subsets and others.

Chapter 4 lays the theoretical foundation for the recursive realization of multi-level
logic circuits. It expands on a process that involves: transforming a behavioral specifica-
tion into a system of Boolean equations, reducing the system of equations into a single
equation that represents the circuit, performing a dependency analysis to determine the
relationship among variables, and to use this knowledge to determine an optimal multi-
level representation that expresses outputs recursively in terms of inputs and previously

defined outputs.

Chapter 5 discusses how to build a global optimization system. It justifies the se-
lection of Scheme as a programming language. It illustrates how the scope of our project
fits into a general circuit optimization scheme. It introduces us to the BORIS toolset and

discusses the structure and data flow of the recursive optimization system.

A detailed analysis of the specific problems that will be attacked in this research
effort and the approaches aimed at solving them are developed in Chapter 6. It includes
investigations into the performance of the BORIS design system and discusses the integra-
tion of a tabular design filter. It discusses modifications to the system in an attempt to
find even better solutions. It provided a framework upon which the software modifications

and updates were developed.

Chapter 7 presents the results of this research effort. A typical optimization session
using the recursive design system is illustrated. The performance of the tabular design
filter is summarized along with the efficiency improvements and cost reductions that were

achieved using this system. This chapter also highlights some interesting results that
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warrant further investigation.

The final chapter, Chapter 8, presents an overall summary of this research effort. It
assesses the strengths and weaknesses of the optimization system, provides some lessons

learned and makes recommendations for the direction of further research.




II. Review of Important Boolean Concepts

2.1 Fundamentals of a Boolean Algebra

Boolean Algebra forms a cornerstone of computer science and digital circuit
design. Many problems in digital logic design and testing, artificial intelligence,
and combinatorics can be expressed as a sequence of operations on Boolean
functions. (20)

Before we begin a detailed discussion of optimization techniques, it is imperative that we
arrive at the picblem with an adequate theoretical background. This section attempts
to bridge any gaps in knowledge by building a sound, theoretical foundation. To accom-
plish this we will highlight some of the fundamental concepts of a Boolean algebra. The

application and relevance of these concepts will become clearer as we proceed.

2.1.1 Postulates for a Boolean Algebra. All attempts at developing new
global optimization techniques are linked by one common thread. They must be based
on the sound principles of a Boolean algebra. A Boolean algebra is often denoted by a
quintuple

< B,+,-,0,1> (2.1)

where B is a set called the carrier , + and - are binary operations on B, and 0 and 1
are distinct members of B (22). Huntington developed a set of six postulates used to
define a Boolean algebra (58). These postulates are by no means unique; other sets have
been developed (73). The algebraic system defined by (2.1) already satisfies two of these
postulates: there is closure with respect to + and - and there exists at least two elements
in B, in this case 0 and 1. The remaining four postulates that also need to be satisfied to

define a valid Boolean algebra are:
1. Commutative Laws. For all a,b in B,

a+bd

b+a (2.2)
a'b = b.a. (2.3)




2. Distributive Laws. For all a,b,c in B,

a+(b:c) = (a+b)-(a+¢) (2.4)
a-(b+c) = fla-b)+(a-c). (2.5)
3. Identities, For all a in B,
0+a = a (2.6)
l'a = a. (2.7)

4. Complements. For every a in B, there exists an element a’ in B such that

a+d = 1 (2.8)
a-d = 0. (2.9)

Note that the “’ ” symbol stands for complementation.

2.1.2 The Inclusion Relation. A very important relationship, as we will soon
discover, is the inclusion relation. This relation on a Boolean algebra is denoted by < and
defined as follows (22):

a<be>a-b=0. (2.10)

It is helpful to draw an analogy between the inclusion relation and the algebra of subsets of

a set. An isomorphism exists between Equation (2.10) and Equation (2.11) shown below:
ACB&=> AnB =0. (2.11)

We can visualize this relationship by use of a Euler diagram, where A and B are subsets

of a universal set S. This is shown below in Figure 2:1.

Boolean relations are often expressed as intervals (segments) between an upper and

lower bound. Let @ and b be members of a Boolean algebra B, and assume that a < b.




Figure 2.1. Euler Diagram

The interval [e,b] is the set of elements of B lying between a and b,-i.e.,
[a,0}={z|z€Banda<z<b}. (2.12)

Once again it is easy to visualize this by looking at the Euler diagram in Figure 2.1, The

interval [A, B) consists of all elements outside of A but within B.

2.1.3 Some Useful Properties. It is often inconvenient to formulate all proofs
based on the original Boolean postulates themselves. Consequently, to facilitate the manip-
ulation of Boolean expressions, a number of formal properties have been developed which
can be proven from the original postulates and the definition of an inclusion relation. Be-
low is a list of some of the more useful properties defined for all a, b,¢cin a Boolean algebra

(22):
1. Associativity.

a+(b+c) (a+b)+c (2.13)
a-(b-¢c) = (a-d)-c. (2.14)
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. Idempotence.

. Boundedness.

. Absorption.

. Involution.

. DeMorgan’s Laws.

at+a = a
a-a = a
e+l = 1
a0 : 0,
at+(a-db) = a
a-(a+d) = a.
(a) =a

(a4b) = d- ¥V
(a-b)

d+bv.

a+ad:b = a+bd
a-(a' +b)

il
®
o
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(2.15)
(2.16)

(2.17)
(2.18)

(2.19)
(2.20)

(2.21)

(2.22)
(2.23)

(2.24)
(2.25)




8. Consensus.

a-bt+ad-c+bc = adbt+d-c (2.26)
(a+b)-(d'+¢)-(b+c) = (a+b)-(a'+¢). (2.27)
9.
@ < atb (2.28)
a'b < a (2.29)

2.1.4 Equivalent Boolean Equations. It is often convenient to express a Boolean
equation in the form f = 0 or ¢ = 1. The following properties can be proven directly from

the Boolean postulates.

1. An arbitrary Boolean equation can be transformed into the form f = 0 using the
following relationship:

a=b<a-b+a-b'=0. (2:30)

Since (a’-b+a-b') is the Exclusive-OR of a and b, this equation can be rewritten as

shown below with € representing an Exclusive-OR:

a=b<=adb=0. (2.31)

2. Similarly, an arbitrary Boolean equation can be transformed into the form g = 1

using the following relationship:
a=be>d -t'+a-b=1. (2.32)

Since (a’- b’ + a - b) is tiie Exclusive-NOR of « and b, this equation can be rewritten

as shown below with © representing an Exclusive-NOR:

a=bea@b=1. (2.33)
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3. If we let ¢ and b be members of a Boolean algebra, then the following properties are
valid:
¢=0andb=0+=a+b=0 (2.34)

a=landb=1<a-b=1. (2.35)

2.1.5 Boole’s Expansion Theorem. Sometimes called “the fundamental theo-
rem of Boolean algebra (22),” Boole’s Expansion Theorem forms the foundation for com-
putation with Boolean functions. If f is an n-variable Boolean function, then f has the

expansions shown below:

f(mhz%“',xn) = mllf(o’x%“wxn)'i'zlf(laz%"',zn) (2.36)
f(21,29,..0y20) = [zll + f(1,29,. .., zn)][z1 + f(0,22,...,20)] (2.37)

2.2 Boolean Functions and Formulas

2.2,.1 What Is A Boolean Function? A Boolean function is actually a mapping
that can be described by a Boolean formula. Given a Boolean algebra B, the set of Boolean

formulas on the n symbols ;,22,...,2, is defined by the following rules (22):

1. The elements of B are Boolean formulas.
2. The symbols z1,22,...,z, are Boolean formulas.

3. If g and h are Boolean formulas, then so are
(a)g+h
(b yg-h
() g
4. A string is a Boolean formula if and only if it can be formed from a finite number of

applications of rules 1, 2 and 3.

Examples of Boolean formulas include z, 2/, z + y-and zy' + (z - (w + u)).
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‘i>_ f(z’yaz)

Figure 2.2. Circuit Implementation of f(z,y,z) = 2y'z + xyz + =y’

With this in mind, an n-variable Boolean function f : B® — B is called a Boolean
function if and only if it can be expressed by a Boolean formula. Any given Boolean

function may have a number of corresponding Boolean formulas.

In this research effort the focus will be confined to a two-element Boolean algebra. In
this context, a Boolean formula is formed with binary variables, the two binary operators
OR and AND, the unary operator NOT, parenthesis, and equal sign (73). It can be shown
that any digital logic circuit can be described mathematically by a Boolean function of
the two-element Boolean algebra, f : B} — Bs. For a given value of the variables, the
values of the function can be either 0 or 1. Consider, for example, a three variable Boolean

function, f : B3 — By, expressed by

f(z,y,2) =2y’ z+ayz+ay . (2.38)

The two-level AND-to-OR circuit corresponding to this function is given in Figure 2.2.
Here we see that each term (conjunction of literals) in (2.38) corresponds to an AND gate.
The disjunction of these terms can be represented by passing the outputs of all the AND
gates through an OR gate. Since this equation contains-no parentheses and consists of a

sum of terms, its Boolean representation is in a sum-of-products form.

2.2.2 Boolean Function Representation. There are a number of ways to rep-

resent a Boolean function, one of the more common being a truth table. A truth table
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enumerates the output values of a function, given every possible input combination. For a
function of n binary variables, there are 2" rows in the associated truth table. The truth

table for (2.38) is shown in Table 2.1.

While a truth table uniquely defines the desired behavior of a circuit, there are a
multitude of algebraic expressions that can specify the same function (73). Finding one

with the least cost is the central focus of circuit optimization.

2.2.3 Relationships Among Variables. The Venn diagram was developed to
help visualize the relationship among variables of a Boolean expression. An example of a
Venn Diagram for the circuit described by (2.38) is shown in Figure 2.3. M. Mano points
out that the diagram consists of a rectangle, inside of which are overlapping circles, one for
each variable (73). We designate all points inside a given circle as belonging to the named
variable and all points outside the circle as not belonging to that variable, For example if
we are inside the circle labeled z then we say z = 1; otherwise, if we are outside the circle

=0,

In Figure 2.3 we see that the three overlapping circles create eight distinct areas.
Each area represents one of the possible combinations of variables. In general for an
n-variable function, there will be 2" possible unique areas on the Venn diagram. “Venn
diagrams may be used to illustrate the postulates of Boolean algebra or to show the validity
of theorems (73).” As an example, we can visually observe that the same Venn diagram
shown in Figure 2.3 can be produced with the function f = zy’ + zyz. Notice that the

term xy’z is missing from the equation. It turns out that the term is redundant, adding

¢y z| f(z,9,2)
0 0 0 0
0 0 1 0
010 0
0 1 1 0
1 00 1
1 0 1] 1
110 0
1 1 1| 1

Table 2.1, Truth Table for f(z,y,2) = 2y'z + zyz + zy’
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Figure 2.3. Venn Diagram for f(z,y,2) = zy'z + ayz + 2y

no new information to the equation. This illustrates one of the Boolean properties known

as absorption.

2.2.4 Canonical Forms. Any Boolean function can be expressed by an infinite
number of Boolean formulas. It would be convenient if there were a restricted class of
Boolean formulas where each Boolean function had a single, unique representation. For-
mulas in such a class do exist and are considered as a canonical form (22). A number
of canonical forms have been developed. We will focus on two of the most common: the

minterm canonical form and the Blake canonical form.

2.2.4.1 Minterm Canonical Form. A minterm is a term in a formula of
n variables which contains all variables of the formula either in complemented or uncom-
plemented form. This concept is illustrated in Table 2.2 for three variable minterms along
with their shorthand representation. We should note that for a function f(z,y,z), the

values

£(0,0,0), f(0,0,1),..., f(1,1,1) (2.39)

are called the discriminants of the function.




Minterms
zyz | Term | Shorthand Notation
000 | z'y2 mo
001 z'y'z m
010 z'y2 mgy
011 z'y2 ma
100 | zy'2 my
101} zy'z ms
110 zy2 me
111 =zyz my

Table 2.2, Minterms for Three Binary Variables

A formula in minterm canonical form is a sum-of-products (SOP) formula in which
all the terms are minterms (65). Each minterm represents one of the distinct areas shown
in a Venn diagram. Assuming a two-element Boolean algebra, a Boolean function may be
expressed algebraically from this diagram by taking the OR of all the terms represented by
shaded regions. Similarly a Boolean function may be expressed algebraically from a given
truth table by forming a minterm for each combination of the variables which produces a
1in the function, and then taking the OR of all the terms (73). As an example, (2.38) can

be represented in minterm canonical form as follows:

f(z,9,2) = 2y'2' + 29’z + 2yz. (2.40)

Using a shorthand notation, we can express this Boolean function as a sum (OR) of

minterms as shown in (2.41).

f(z,y,2)=Y_m(4,57). (2.41)

It is important to differentiate the terminology applied to the three categories of
minterms. The first is the on-set which describes all minterms for which the function
evaluates to ‘1’. In the example above, minterms 4, 5 and 7 belong to the on- set. The
off-set is the set of all minterms for which the function evaluates to ‘0’. In the example
above, minterms 0, 1, 2, 3 and 6 belong to the off-set. The third and final category is the

don’t-care set usually denoted by an ‘x’ or a ‘d’. It represents those minterms for which we




don’t care if they evaluate to ‘0’ or ‘1’. Incompletely specified functions are those functions

that contain “don’t-care” conditions.

2.2.4.2 Blake Canonical Form. One of the key advantages of a Blake
canonical form (BCF) is that, not only is it canonical, but it is also significantly reduced.
A term p is called an implicant of a Boolean function f if p < f. Clearly if a function is
expressed in SOP form, all of the terms are implicants of f. An implicant of f is considered
a prime implicant if the removal of any of its literals results in its no longer being an
implicant (85). The Blake canonical form of a function f consists of the disjunction of all

the prime implicants of f.

The efficient transformation of a formula to its Blake canonical form has been the
topic of numerous research efforts. It is possible to accomplish this task through the
careful application of the fundamental Boolean postulates and their associated properties.
Methods for generating BCF({) include ezhaustion of implicants, iterated consensus, and

multiplication (65). One of the more popular methods today uses implication and was
developed by W.V. Quine (86).

2.3 Boolean System

2.3.1 What Is A Boolean System? An n-variable Boolean systemis a collection

n(X)
p2(X)

a(X)
2(X) (2.42)

p(X) = a(X)

of simultaneously asserted equations (22). p; and g¢; are n-variable Boolean functions on
B and X represents the vector (z1,22,...,25). Even though we have defined a Boolean
system as a collection of equations, we know that an inclusion relation can be easily

transformed into an equation as shown by Equation ( 2.10).

Typically a circuit specification will be defined by a Boolean system rather than a
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single Boolean equation. Each equation generally specifies one output of a multi-output
system. When attempting to optimize a multi-output circuit design, if we treat each
equation independently we reduce our chances of arriving at an optimal or near-optimal
solution. This is because we fail to take advantage of similiarities between the equations
such as identical terms. For this reason, it would be advantageous to transform a Boolean
system into a single Boolean equation. Fortunately such a transformation is possible

utilizing a technique called Boolean reduction.

2.3.2 Boolean Reduction. Any system of Boolean equations can be reduced to
a single equation. By applying the property (2.31), the Boolean system represented by

(2.42) can be reduced to the equivalent system shown below:

nX)oa(X) = 0
n(X)®eX) = 0 (243)
r(X)®a(X) = 0.

This system of equations can in turn be transformed into a single Boolean equation by

using the property described by ( 2.34). This single equation is

f(X)=0, (2.44)
where { is defined by
k
f=Yrda. (2.45)
$=1

Similarly we can show that any Boolean system can be converted into the form

f(X) = 1. The system of equations shown in (2.42) can be transformed into an equivalent




system using the property shown in (2.33):

nX)oqaX) = 1
P(X)0@(X) = 1 (2.46)
n(X)ou(X) = 1.

This system of equations can be transformed into a single Boolean equation using property

described by (2.35). This single equation is
f(X)=1, (2'47)

where { is defined by \
f=TIriow). (2.48)

i=1
The normal form representation described by 2.47 is advantageous for a number of reasons
(22). It provides a standardized representation on which to base further synthesis and
analysis. The function f, corresponding to a given system of Boolean equations, is unique.

Finally, the normal form provides a way to deal with “don’t-care” conditions in a uniform

and convenient manner.




III. Overview of Digital Circuit Optimization Techniques

3.1 The Motivation for Optimizing Digital Circuits

Over the years, the need for effective circuit optimization tools has not changed, but
the reasons for optimizing digital circuits have. The optimization of digital circuits has
been an active area of research since the early 1950s. In those days digital systems like the
revolutionary ENIAC (Electronic Numerical Integrator and Calculator) weighed several
tons and contained thousands of resistors, vacuum tuhes and other discrete components
(55). Because of the exorbitant expense of logic gates in those days, early optimization
efforts concentrated primarily on the reduction of discrete components in a given logic

design.

With the advent of the transistor and later, integrated circuits, the cost of logic gates
in the late 1960s and early 1970s was reduced dramatically. Because of this, there was a
lack of interest in investing a lot of time in sophisticated optimization techniques when

hand-simplification seemed to perform adequately for most designs.

It wasn’t until the mid to late 1970s that the field of circuit optimization caught a
second wind; it has been going strong ever since. A number of factors have contributed
to this resurgence. The most prominent of these is the introduction of LSI (Large Scale
Integration) and later VLSI (Very Large Scale Integration) technology. This involved
placing an increasing number of logic gates on an ever decreasing amount of surface area. As
the variety of new applications for digital circuits multiplied exponentially, their complexity
increased likewise. Whereas earlier circuits consisted of five to ten variables and a few
hundred gates, today it isn’t uncommon to find 30 or more variables, multiple outputs and
thousands or in some cases millions of gates. As you can imagine, the human designer’s
ability to synthesize such complex circuits has placed serious limitations on the achievable
goals. Not only are human designers prone to making mistakes, but their designs are often

quite inefficient.

By the early 1980s Computer-Aided Design (CAD) systems were becoming quite
sophisticated and accessible throughout the world. This led to an effort to overcome some

of the obstacles in circuit optimization, such s its inherent complexity, by automating the
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process. Numerous systems have since been developed, some of which are proving to be

commercially viable.

Recently, efforts to automate circuit optimization have focused on the use of Hard-
ware Description Languages (HDLs). HDLs were designed as a means to document, model,
and in some cases simulate complex VLSI designs. Automated logic synthesis is driven by
the desire to take designs described in an HDL and automatically generate an optimi.ed

circuit (66). R.K. Brayton described it in more general terms as follows:

A long-term goal for computer-aided design (CAD) systems is the automatic
synthesis from a behavioral description to silicon, producing near-optimal re-
sults that meet the specifications set by the designer and that are competitive
with or better than manually aided designs. (17)

One of the major obstacles in realizing this goal is the efficiency of the optimization
algorithms. It has been shown that most VLSI optimization problems are nondeterministic
polynomial-time complete (NP-complete for short) (98). In essence this means that they
belong to a class of problems that can’t be solved in polynomial time. Their time and
space complexity often increases at an exponential rate. When automated on a computer,
this places serious limitations on the circuit optimization system. Because of the required
storage and computations, computerized optimization using classical approaches became
quite impractical for problems with-many variables (57). This has led to numerous efforts
to find and develop efficient optimization algorithms. New approaches involve everything
from improved heuristics and new ways to represent Boolean networks, to applying Al

techniques, such as rule-based systems, to the problem.

Today, the basic objectives of circuit optimization include (17):

¢ minimizing the overall area of the design,
¢ minimizing the critical path delay time,

¢ improving the testability and verifiability of the synthesized logic.

Reducing the overall area of the design is important for a number of reasons. Obviously,

smaller digital circuits can be placed in smaller areas (watches, radios, laptop computers,
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etc.). Nowhere is this more important than in advanced aerospace vehicles where space
on the aircraft is a highly critical asset. Another reason for reduction of the surface area
is that “the cost of fabricating a circuit is actually an exponential function of the area, at

least if the circuit is large (98).”

Reducing the critical path delay time will obviously speed up the circuit. The fastest
circuit would be one in which signals have to travel through the fewest gates. Since every
system of Boolean functions can be expressed in an equivalent SOP form, this representa-
tion translates into a circuit with a depth of two gates. While this typically represents the
fastest circuit possible, its implementation often requires a great amount of surface area
and may lead to an unacceptable fan-in at some gates. Thus there generally needs to be
a compromise between a reduction of surface area and a reduction of propagation delay.
Recently a number of systems have incorporated a means to optimize a circuit based on
a such a compromise. One such system is SOCRATES, which will be discussed in more

detail later.

Gaining in importance as circuits become more complex is the idea of developing
digital systems that are easily easily tested to ensure that they function correctly. Fortu-
nately, producing optimized circuits that are testable and verifiable is often a by-product of
automated optimization techniques (17). Future design systems will generate a complete

set of test vectors resulting from the circuit synthesis and optimization process.

Another purpose for optimization systems is to redesign a given circuit, translating
it from one technology to another while taking full advantage of the features of the target
technology. Many minimization systems may reduce a circuit into a system consisting of
standard AND and OR gates. However, they may be implemented using NAND and NOR
gates or a more current technology. When an optimized AND-OR circuit is transformed
into a new technology, the resulting circuit is generally not optimal and can undergo further
reduction. If the target technology is known from the beginning, it is possible to design
and optimize a digital circuit with the target technology in mind. A good measure of the

quality of an optimization system is its ability to incorporate new technologies as they are

developed and to convert back and forth between technologies.




To be competitive in the future, circuit optimization systems need to be able to
quickly produce verifiable circuits from a behavioral specification. “This capability will
become increasingly important as the application-specific integrated circuit (ASIC) market

continues to meet its rapid growth projections (17).

3.2 Two-Level Optimization Techniqaes

The area of logic synthesis is tvpically divided into two-level synthesis and multi-level
synthesis. While both approaches have been around for well over 40  ears, two-leve! tech-
niques received much of the early attention. A two-level logic circuit, as its name implies,
consists of, at most, two-levels of gates. An example is shown ia Figure 2.2. It results from
a direct translation of a Boolean, SOP formula into an equivalent circuit representation. It
has long been the preferred approach because of its innate simplicity. Efforts have concen-
trated on reducing a function into a minimal SOP form. Farly designers used a variety of
manual simplification techniques such as Boolean simplification and map-based approaches.
Eventually, systems like the Quine-McCluskey technique were introduced to automate the
process. With the introduction of LSI and the resulting popularity of programmable logic
arrays (PLAs), PLA minimization techniques eventually dominated two-level optimization

research.

3.2.1 Boolean Simplification. “The complexity of digital logic that implements
a Boolean function is directly related to the complexity of the algebraic expression from
which the function is implemented (73).” Boolean simplification was probably the first
technique used to optimize the design of digital rircuits. Boolean simplification involves
applying the fundamental axioms and theorems of Boolean algebra to mathematically
reduce (simplify) a given Boolean formula. By simplifying the formula we in turn simplify
the circuit it represents. This concept can probably be best illustrated by the use of a

simple example. Starting with (2.38), the following js a sequence of simplification steps

that will produce an optimal result:




1. Original Boolean equation (2.38):
f(z,9,2) =2y’ 2+ zyz + 2y’ . (3.1)
2. Term one is eliminated through absorption with term three:
f(z,y,2)=zyz + 3y’ . (3.2)
3. Terms one and two form a consensus term:
f(z,9,2)=zyz + 2y +z2. (3.3)
4. Term one is eliminated through absorption with term three:
flz,y,2) =2y + 22 (3.4)

If we translate (3.4) irto its equivalent circuit representation shown in Figure 3.1,
we see that the original circuit shown in Figure 2.2 has been significantly reduced; one
thres-input AND gate has been removed completely and another three-input AND gate
has been reduced to a two-input AND gate. Although this may seem impressive on the
surface, we must keep in mind that it was a very simple example. The method used to
apply the theorems and axioms is often a trial and error technique which relies heavily on
heuristics and the experience of the designer. As a result, automating Boolean simplifi-
cation systems based on these techniques is a largely undeveloped science. However, it is
getting mare attention as the numerous advantages of global optimization systems become

more apparent.

3.2.2 Karnaugh Map Technique. One of the early optimization approaches
used a map-based reduction technique. This approach, originally developed by Veitch and
later modified by Karnaugh, became known as the Karnaugh Map Method. It enables a

designer to place a Boolean function on a map and reduce it by recognizing adjacent terms.
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Figure 3.1, Circuit Implementation of f(z,y,2) =2y’ +zz
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Once again we will illustrate this technique with the use of an example. To reduce (2.38)
a three-variable Karnaugh map, which consists of eight distinct areas, is required. The
eight areas in the Karnaugh map correspond to the same eight areas in the Venn diagram
(Figure 2.3) and the eight possible minterms. The reduction process begins by placing a
‘1’ in each block which is covered by a term in the Boolean function. Next, one needs to
recognize and combine adjacent terms. ‘whe ruies regarding this process are summarized

as follows (66):

¢ Blocks which are combined must be locically adjacent. Any given block has n ad-
jacent blocks where n is the number of variables in the function represented by the

map.
o The number of blocks combined must be a power of two.
¢ Blocks are combined to form the largest grouping possible.

o As few groups as possible are formed which cover all the blocks which enclose a ‘1.

For our example, these steps -esulted in the creation of two rectangles, each enclosing
two 1’s as shown in Figure 3.2. The left rectangle represents the area enclosed by zy'. The
right rectangle represents the area enclosed by zz. The sum of these two terms forms the

answer.:

f(z,y,2) =y’ + w2 (3.5)
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Figure 3.2. Karnaugh Map for 2y'z + 2yz + 29’ = 2y’ + 22

As you can see the result is the same as that produced by visual observation of
the Venn diagram. A more detailed treatment of Karnaugh map reduction techniques for
a variety of examples is given by Morris Mano in his book Digital Logic and Computer
Design (73). Mano points out that this method of simplification is convenient as long as
the number of variables does not exceed five or six. As the number of variables increases,
the excessive number of squares in the map makes it difficult for a human user to recognize
patterns. For those reasons, Karnaugh map reduction techniques are only applied to the
most simple circui: designs; such designs are becoming increasingly rare in this modern

age of electronics.

3.2.3 Quine-McCluskey Method. In an effort to develop an automated circuit
optimization system that doesn’t rely on a human designer’s skills, the Quine-McCluskey
method was developed. Quine developed the original algorithm with McCluskey later
improving on it. The Quine-McCluskey method takes a tabular approach to reducing a

Boolean function into a minimal SOP form. This approach involves two basic steps (12):

1. Generation of all the prime implicants

2. Selection of-the prime implicants-which cover the given-function-with a-minimal-cost.

The result of Step 1 is a formula consisting of all the prime implicants of the Boolean

function; this formula is in Blake canonical form. A Blake canonical form can be obtained

using one of a variety of techniques.
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The second step involves finding an optimal selection of prime implicants that covers
the function. Each prime implicant may cover one or more minterms. Thus, the generally
accepted goal is to cover the function using the fewest prime implicants. To find an optimal

cover, a classic set-covering approach is used.

The advantages of the Quine-McCluskey technique are numerous. They include the

following (73):

e It is suitable for machine computation
e It can be applied to problems with a moderate number of variables
e It requires no human cognitive skills as do map-based or axiom-based approaches

o It is guaranteea to produce a simplified standard-form expression for a function.

Despite its advantages, the Quine-McCluskey technique does have its drawbacks.
In its most basic form, it only applies to the simplification of functions with one output
variable. It also has a complexity which belongs to the class of NP-complete problems
(62). “Since the number of elements in the covering problem may be proportional to
the exponential of the number of input variables of the logic function, the use of these

techniques is totally impractical even for medium sized problems (10-15 variables) (12).”
3.2.4 Programmable Logic Array Minimization

3.2.4.1 Background. “In the late 1970s, the introduction of LSI and later
VLSI made regular structures such as programmable logic arrays (PLAs) desirable for the
implementation of logic functions because of the reduction in design time they offered (12).”
As a result, the pursuit of efficient PLA optimization algorithms dominated optimization
research. A PLA is conceptually a two-level AND-OR circuit. The product terms are
produced in the AND array and the SOP form is generated in the OR array as shown in
Figure 3.3 (62). Because of this, most of the classical two-level approaches such as the
Quine-McCluskey method will work for PLA optimization also. However, the limitations
of these approaches spawned numerous efforts to develop systems that could handle the

large number of inputs and outputs that are characteristic of most VLSI circuits. The
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Figure 3.3. A Standard PLA Implementation




focus of most of these efforts involved the development of heuristic algorithms which do

not guarantee a niinimal solution but instead yield near-optimal solutions (62).

3.2.4.2 Early Methods. The goal of two-level (PLA) minimization is sim-
ply to-reduce the number of product terms. Since each product term is implemented by a
row in the PLA, a reduction in the number of product terms reduces the number of PLA
rows required and in turn reduces the physical area of the PLA (12). Numerous PLA op-
timization techniques have-been developed. One such technique involves generatir ¢ all of
the prime implicants and then using heuristic algorithms to select the best cover. This ap-
proach-suffers from the possibility that the number of prime implicants may be extremely
large (12). A second, and more popular approach, is the simultaneous identification and

extraction of prime implicants.

Two popular identification/extraction methods were developed by Rhyne (87) and

by Arevalo (1). Both methods take the following approach:

1. Select a base minterm from the on-set! of the logic function to be minimized.
2. Expand the term until it is prime.
3. Remove all-minterms that are covered by this prime.

4. Repeat steps 1 to 3 until all the minterms of the care-set are cover.'

In Rhyne’s method, all prime implicants generated from the selected minterm are
generated. If the prime implicant must be in any prime cover of the care-set of the logic
function, or if it satisfies some predetermined heuristic criterion, then it is selected (12).
The drawback to this method is that the number of prime implicants generated can be
excessive. Arevalo’s method is similar to Rhyne’s except that it only generates a subset
of prime implicants covering the base minterms. While it is a much faster method, its
solutions are seldom as good (12). These methods and others provided some improvements
over the Quine-McCluskey technique for selected sets of problems; however, they were still
a long way from an ideal algorithm. They did begin to show how heuristics could be used

to optimize circuits in a-more efficient fashion.

1See section 2.2.4.1




3.2.4.3 Heuristic-Based Minimization Algorithms. There are a vari-
ety of PLA-based minimization algorithms that have been developed over the years. The

following systems are a few o the most prominent in current literature.

MINI. MINI (57) is a heuristic-based logic minimization technique initially
developed by IBM back in the middle 1970s. It was one of the first and most successful
systems built around a heuristic approach to the problem. It was designed with the intent
of dealing with practical problems of 20 to 30 input variables, which could not be handled
using a classical approach. Hong describes the differences between MINI and classical

approaches as follows (57):

o The cost function is simplified by assigning an equal weight to every implicant.

e The final solution is obtained from an initial solution by iterative improvement rather

than by generating and covering prime-implicants.

MINI attempts to eliminate the problems associated with a local minima by limiting
the cost function to the number of implicants in the solution. Since only the number of
implicants is important, their form can be altered as long as the coverage of the minterms
remains proper. It modifies the implicants using formalized heuristic techniques similar to
those used in Karnaugh map reduction. The process starts with an initial solution and
then proceeds to make iterative improvements on it. There are three basic modifications

that are performed on the implicants of the function (57):

1. Each implicant is reduced to the smallest possible size while still maintaining the

proper coverage of minterms.

2. The implicants are examined in pairs to see if they can be reshaped by reducing one

and enlarging the other by the same set of minterms.

3. Each implicant is enlarged to-its maximal size and any other implicants that are

covered are removed.

The order in which each of the steps above is applied is crucial to the success of the

procedure. However, in general the three steps are iterated until no further reduction is
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obtained in the size of the solution. The overall goal of the algorithm is to further optimize
the function by considering groupings of minterms that may or may not be obvious from
the statement of the problem. Over the years it proved to be quite successful in finding

near-optimal representations of medium-complexity digital circuits

PRESTO. PRESTO, another heuristic minimization program, was introduced
by D. Brown in 1981 (21). Like MINI, its operation focuses on expanding each implicant of
the logic function and removing other implicants covered by the expanded one. However,
the two methods differ in how the implicants are expanded (12). MINI expands each
implicant to its maximum size in both the input and output part. PRESTO expands
the input part of each implicant to its maximal size, but reduces the output parts of
the implicants maximally by removing covered implicants from as many output spaces as
possible. In other words, the covering step is implicit in the output reduction procedure;
implicants are expanded and then all those implicants that are covered by this expansion
are removed. This eliminates the problem of having to generate and store all of the
minterms. PRESTO’s output reduction step produces a cover that is irredundant (i.e.,
a cover such that no proper subset is also a cover of the given logic function) but not
necessarily prime. Another way the two differ is the way the expansion process is carried
out (12). MINI generates the complement of the logic function (i.e., produces the off-set)
to see if the expansion of an implicant changes the coverage of the function. PRESTO
avoids the computational costs associated with computing the complement, but its input
expansion process requires a check to see if minterms covered by the expanded implicant
are covered by some other implicant. Depending on the particular application, this in

general costs more computation time.

ESPRESSO-I. A detailed record of the creation of the ESPRESSO algorithms
and subsequent developments is provided in a book by its designers titled Logic Mini-
mization Algorithms for VLSI Synthesis (12). In an effort to improve on the techniques
developed in MINI and PRESTO, a new program, ESPRESSO-], was developed during
the summer of 1981. Experimentation with this prototype system enabled the designers
to draw some important conclusions. They found that MINI’s methods, which involved

computing the complement of the logic functions, were superior because the initial cost
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was typically offset by a more efficient expansion procedure. This method gained further
acceptance with the discovery of more efficient methods to complement a logic function.
They also found that the technique used by MINI of iteratively expanding and removing
implicants until no further reduction in the number of product terms is obtained, generally

produced better results, justifying any increases in computation time.

ESPRESSO-II. All of the accomplishments-realized with ESPRESSO-I were
incorporated into a new system during the summer of 1982. The result was a system called
ESPRESSO-II which even today is one of the most popular PLA minimization techniques.

The initial goals in the design were to:

1. Solve practical logic minimization problems with the use of limited computing re-

sources.

2. Obtain a result that was close to the global optimum. '

The details of how this system works can be found in the designer’s book (12).
In general it follows the same expansion/reduction techniques developed in MINI but
modified to incorporate the improvements mentioned above. The ESPRESSO-II algorithm
is designed to handle multiple-output as well as single-output circuits. The authors claim
the system will produce a near-optimal or in some cases optimal PLA implementation
of the circuit. In tests, ESPRESSO-II compared favorably with the Quine-McCluskey
technique in its ability to minimize a circuit, but arrived at a solution on the average 10

to 100 times faster when working with large circuits (17).

3.2.4.4 An Al Approach To PLA Optimization. Within the last few
years, a variety of new approaches to PLA minimization have emerged. One of these
involves an Al approach to PLA optimization (62). This novel approach formulates the
problem as a state space search. Several heuristic evaluation functions are used to guide
the search which involves the construction of a binary decision tree. This technique has

shown some promise in reducing large circuits with as many as 40 variables (62).




3.2.4.5 The Exact Two-Level Minimization of Logic Functions. While
near-optimnal solutions are adequate for most applications, thiere are situations when we
would like to have an efficient algorithm that produces an exact global optimum of a logic
circuit. The results from an exact optimizer could also be used to evaluate the perfor-
mance of near-optimal, heuristic systems. It is always valuable to know exactly how close
we are to a global optimum. Such exact optimizers do exist and McBOOLE (27) and
EXPRESSO-EXACT are two examples. Most exact minimizers try to improve on the
basic techniques developed by Quine and McCluskey. McBOOLE makes use of efficient
graph and partitioning techniques to enable it to handle functions that are much larger
than before. Others have proposed heuristics that greatly reduce the search space of the

branch-and-bound algorithm (99).

3.2.5 Summary of Two-Level Optimization Techniques. Current optimiza-
tion systems can consistently and efficiently find optimal or near-optimai two-level circuit
representations for a variety of logic functions. These functions can vary from simple func-
tions with single outputs to functions with hundreds of inputs and outputs. There are
even systems available that are capable of operating efficiently on a personal computer. A
considerable amount of research is currently underway which promises to deliver even more
efficient two-level optimization systems in the near future. In summary, today two-level

logic-function optimization is considered a very well developed science.

3.3 Multi-Level Optimization Techniques

While the area of two-level optimization is becoming well understood, multi-level
optimization is still in its infancy. A multi-level implementation of a Boolean function
(see Figure 3.4) allows the unrestricted use of intermediate signals. The option to re-
use intermediate signals can lead to an unlimited number of ways to represent multi-level
circuits. While this significantly enhances the degrees of freedom offered to a designer,
it also is accompanied by a significant increase in complexity. It is this complexity that
has hampered the creation of efficient automated multi-level optimization systems. Karen

Bartlett describes multi-level optimization as “a science that suffers from the very thing
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Figure 3.4. Two-Level versus Multi-Level Logic

that makes it attractive, its flexibility (3).” Even today, manual techniques for optimizing
multi-level circuits frequently outperform automated systems, but fortunately the gap is

closing.

There are many reasons why multi-level implementations of logic circuits are pre-

ferred over the simpler two-level variety (66):

1. Functions that are implemented in multi-level logic typically occupy less area than

an equivalent two-level representation.

2. Multi-level implementations often provide a more natural structure for many digital
systems. Logic has often been perceived as falling into two categories, control logic
and data-flow logic. While control logic is best suited for PLA implementations, data

flow logic fits more naturally into a multi-leve]l format.

3. When a two-level design is implemented in standard gate technology, it often exceeds
the fan-in limitations of standard gates, Multi-level implementations generally re-

duce the problem associated with fan-in and fan-out. Many multi-level optimization

systems provide the designer with the necessary tools to carefully control it.




Through the years a variety of approaches have been taken to optimize multi-level logic
circuits. A few of these systems have proven to be commercially viable and competitive
with manual optimization techniques. Most of the approaches to multi-level optimization

fall into two major categories. They are local optimization and global optimization (22).
3.3.1 Local Optimization

3.3.1.1 The Use of Artificial Intelligence. Before we investigate local
optimization techniques in detail, it is imperative that we understand the motivation be-
hind the recent interest. 'Chis motivation was sparked, in part, by noétable advancements

in the field of artificial intelligence. William Birmingham points out in his article that:

Artificial intelligence (AI) is being applied to increasingly more broad and dif-
ficult problems. Recently, interest has grown significantly in Al applications of
digital system design. Digital system design is an area which has eluded at-
tempts of significant automation due to its very complex nature. Al in general,
and rule-based systems in particular, provide an attractive means of manag-
ing complexity by applying problem-solving techniques which utilize heuristic,
rather than algorithmic approaches. (8)

Local optimization techniques are appealing because in many respects, they model the
process a human designer would take in optimizing a circuit. This possibility is one of
the key features of rule-based systems and AJ in general. A rule-based system tries to
capture the knowledge of an expert in a non-algorithmic fashion and use this knowledge
to guide a sequence of actions. If incorporates general, heuristic information into the
system as rules. Recent advances in rule-based systems (often called expert systems) have
made the application of Al principles to computer aided design and optimization much
more practical (96). This has spawned numerous research efforts in the application of Al

techniques to the local optimization of multilevel logic circuits.

3.3.1.2 Local Optimization Principles. In local optimization, an initial
circuit is synthesized from a system of equations that specify the circuit. A rule-based
system then scans repeatedly, applying local transformation rules to modify the circuit.

These rules seek to reduce the circuit area or propagation-delay.
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It is important to understand exactly when to apply local optimization techniques.
The word optimization, in our context, implies that there exists an initial circuit to opti-
mize. Thus, a local optimization system generally accomplishes its task in the following

three distinct steps (31):

1. Minimize the Boolean equations specifying the circuit,
2. Synthesize an initial circuit,

3. Optimize the circuit for a given technology.

Only the third step actually involves the application of local transformations. In Step 1
the system of Boolean equations that describe the circuit is reduced using mathematical
methods, taking full advantage of any “don’t-care” conditions. In Step 2 a variety of
techniques are utilized to synthesize the initial circuit. They often use a limited set of gate
types such as NAND/NOR gates and multiplexers. Some systems incorporate multi-level
synthesis techniques such as factorization to take advantage of any common intermediate

terms. Finally, in Step 3, local optimization principles are applied.

The key to the success of local optimization is the use of an efficient rule-based system.
Each rule encompasses replacing an existing configuration of one or more circuit elements
with.an equivalent but more desirable configuration as shown in Figure 3.5 (31). Since this
replacement involves only a few circuit elements, it is considered local optimization versus
a global approach that involves all of the circuit logic (44). The rules generally follow
those that a designer vses when manually optimizing a logic circuit. New rules can be
incorporated into a local optimization system by simply adding them to the library. “By
using libraries of rules geared towards specific technologies, one can drive the optimization

towards a particular technology or convert from one technology to another”(44).

During the optimization process, the rules are applied in a well ordered fashion. The
order in which they are applied can have a dramatic affect on the final result (44). General
rules that reduce both area and speed are applied first. They are prioritized by their
relative importance. These rulesfire repeatedly until no inore general rules can be applied.

At this point some of the more advanced systems like SOCRATES will perform a timing
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analysis of the critical path. If the critical path delay time does not fall within established
guidelines or predefined limits, then some time-saving rules will be applied to gates in the
critical path. When the desired time has been achieved, space-saving rules will be applied

to gates not on the critical path.

The final result of these local optimization systems is often a significantly improved
design. Not only are the designs faster and smaller, but the time taken to synthesize
them with a local optimization system is significantly reduced. Some systems have proven
themselves commercially viable and able to consistently outperform human designers. A

few of the more popular systems in use today are described in the following section.

3.3.1.3 Local Optimization Systems. The history of the development
of local optimization systems is a rather recent one. It was aided by recent interest in
applying rule-based systems to practical problems that had been difficult to solve using
other approaches. IBM was one of the first companies to show an interest with their
develc: 1ent of the Legic Synthesis System (LSS) in the early 1980s This was later
followed by LORES, DAS/Logic, SOCRATES, and others.

LSS. LSS (30) was developed to transform a high-level circuit specification
into a production-quality implementation through a series of local transformations. The
primary goal was a system that produces feasible, not necessarily optimal, circuits that
satis{ly a series of constraints. They should meet the requirements of the target technology,
take full advantage of the features of that technology, and produce logic with acceptable
gate counts and path lengths.

The system proceeds in a step-by-step fashion. It begins by translating the system
specification from a register-transfer language to a network consisting of ANDs, ORs,
NOTs, decoders, adders, etc. Next, through a series of local {ransformations at several
levels, the network is replaced by more primitive implementations such as NANDs and
NORs and eventually, technology specific devices. The entire process evolves from initial
stages which are relatively independent of the target technology, to-the final stages that
are technology-specific. The use of multiple stages in the synthesis and optimization of

logic enables the system to take advantage of numerous simplification techniques that are
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applicable at each lzvel.

'The LSS system has shown a considerable amount of success particularly in its use
on IBM projects. “On one project in particular, it was used on 90 percent of the more
than 100 chip designs. This cut their initial design time in half (30).” Despite the success,
LSS also had its drawbacks. It was limited in its ability to handle timing and gate-count
problems. It did not take full advantage of all the information that was available such as
“don’t-care” conditions. It also was often out-performed by systems that approached the
problem from a more global point of view. Despite this it provided the framework from

which future systems would follow.

LORES LORES (LOgic RE-Organization System) is a system which automati-
cally partitions and restructures a logic circuit consisting of standard SSIs and MSIs so that
the gate types and numbers of input/output terminals are compatible with the require-
ments of LSI (80). The advantages of LSI are numerous; they include smaller size, better
performance, reduced power consumption, and often a reduction in overall cost. These
advantages don’t come free and the price we nften have to pay is increased development
time, greater complexity and a more difficult testing and verification process. LORES
concentrates its efforts on achieving some of the benefits of LSI by overcoming some of the

difficulties.

LORES is an automatic logic optimization system whose primary functions are de-

scribed below (80):

o Extract one of the partitioned sections from the original design.

Eliminate any unused or redundant logic.

Convert or restructure the logic to those logic elements allowed in LSI.

Partition the logic circuit so that the number of gates and input/output terminals

are within the specified limits.

One of the major drawbacks to LORES is its inability to handle asynchronous circuits.
Thus, for circuits containing an asynchronous component, a certain amount of simulation

and manual modification may be necessary (80). On (e other hand, “LORES directly
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contributed to a reduction in development time and manpower by automating the circuit

transformation process, and by reducing the necessity for design verification (41).”

A recent version of LORES has surfaced called LORES/EX (59). It is designed to
transform an existing logic circuit from one technology to another. Not only is it flexible
to changes in technology, but it also has a number of other special features. It introduces
standardization rules which seek to reduce and simplify the size of the rule-base. It has
incorporated features that employ conflict resclution to improve the overall quality of the
circuits. It also has the ability to partition large circuits into smaller ones allowing LORES

to handle circuits with up to 10,000 gates in a practical amount of time.

DAS/Logic. DAS/Logic (Design Assistant Series) is a tool being developed
at Carnegie Group Inc. to aid-in the design of ICs. It is described by Birmingham (8) as a
rule-based system written in OPS5 which transforms a behavioral description of a system
into a circuit schematic. The input is a high-level description of the desired behavior of the
circuit and the output is a set of standard cells and an interconnection list. The sequence

of design phases is illustrated in Figure 3.6 (8).

You will probably notice that the phases described in Figure 3.6 are very similar to

those used in the LSS. Like LSS, DAS/Logic proceeds from technology-independent phases
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into technology-dependent ones. There are a variety of steps that are performed at each

design level. These steps include (8):

1. Generate a structure fur the current design level.
2. Look for optimization opportunitiées or constraint violations.
3. Correct violations or apply optimizing transforms.

4. Generate constraints/opportunities for the next level structure.

DAS/Logic design follows a top-down approach combined with some bottom-up
strategies. The top-down approach enables the system to work from a more global stand-
point; however, knowing the features of the implementation technology makes bottom-up
design strategies desirable also. For example, one wouldn’t want a system that creates four-
input OR gates if they do not exist in the target technology. DAS/Logic designers realized
early that an ideal logic optimization system must include a combination of top-down and

bottom-up strategies.

The system, at last report (8), was still in the development stages but showing
considerable progress. The entire development effort stressed the use of “intelligent” Al
techniques to solve difficult problems. “Through the use of domain knowledge extracted
from designers, DAS/Logic is able to intelligently apply its optimization and constructive
expertise, thereby drastically reducing the amount of search necessary to achieve high

quality designs (8).”

SOCRATES. SOCRATES (Synthesis and Optimization of Combinatorics us-
ing a Rule-based And Technology-independent Expert System) is currently one of the most
successful logic optimization systems. It was developed with the intent of incorporating
the most attractive features of current optimization systems. The resulting system com-
bines the use of two-level and multi-level optimization techniques with local, rule-based
optimization algorithms. The resulting system can be generalized as proceeding in the

following steps (50):

1. The equations or net-lists used to specify the desired behavior of the system are

transformed into a format compatible with the PLA minimizer EXPRESSO.
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2. EXPRESSO reduces each function into its minimal SOP form.

3. Weak division? is used to transform the two-level implementation into a reduced, but

equivalent, multi-level circuit.

4. A rule-based expert system is used to apply local transformations to the circuit to

optimize‘it for a particular technology.

SOCRATES also has the capability to input existing circuit designs in a predefined format
to undergo further optimization or to convert them to a new technology. It is probably
one of the most proven systems in its ability to handle area and timing constraints. A
user can specify an optimal compromise between increased speed and reduced size. The
circuit can then be optimized to achieve the desired goals. The rule base is built so that
the user can easily enter additional rules which are automatically verified and classified in

the knowledge base (31).

SOCRATES takes several measures to insure an efficient operation. It uses metarules
to ensure that the search space is kept as small as possible. This, coupled with the fact
that it is written in the C language rather than a typical expert system language, ensures
comparatively short run-times. Because of these improvements, “combinational circuits
that would have taken several days to synthesize and optimize can now be generated in
minutes (31).” The bottom line is that for larger circuits (75 to 100 gates), SOCRATES
achieved area-reductions ranging from 25 percent to 60 percent in most cases; these results

compare extremely well to those achieved manually by experts (44).

3.3.1.4 Summary of Local Optimization Systems. While local opti-
mization systems are quite successful and are being applied to increasingly difficult prob-
lems, they are not, by themselves, the solution to all optimization challenges. They have
proven to be extremely effective when it-comes to transforming a given circuit design into a
new technology, but are-still very weak when it comes to taking full advantage of 2ll the in-
formation contained in a specification, including “don’t care” ronditions. SOCRATES has

taken steps to make use of such information by incorporating simple global optimization

?Weak division is discussed in detail in section 3.3.2.4
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algorithms into its system. Many local optimization systems are limited by the efficiency
of their rule-based systems. While the speed of these systems is improving, efficiency still
provides a major obstacle. The future of local redesign systems is a bright one and there

are likely to-be more hybrid systems like SOCRATES.

3.3.2 Global Optimization. Unlike local optimization, which works only on
small portions of a circuit at any given time, global optimization considers the entire
circuit’s logic functions. The benefits are quite obvious. By considering all of the circuit’s

logic functions at once we can:

o Effectively eliminate any redundancies in the circuit.
o Take maximum advantage of any “don’t care” conditions that exist.

o Facilitate the use of intermediate signals to create a more efficient multi-level struc-

ture.

Global optimization, as its name implies, is a more general approach to the multi-
level optimization problem. This approach typically results in a more flexible system,
capable of optimizing any circuit, independent of the ultimate target technology. While
these features appear extremely attractive, they do not come without their drawbacks.
Because global optimization works with the logic functions that describe a circuit rather

than the circuit’s physical representation, it is considerably more complex.

The current state-of-the-art in multi-level logic optimization, particularly as it relates
to global approaches, is addressed in Multi-Level Logic Synthesis (17), an article by R.K
Brayton, G.D. Hachtel and A.L. Sangiovanni-Vincentelli. Much of the following material
in this chapter is a summary of that article; for further -detail and understanding, one

should take the time to look through the article in its entirety.

A variety of techniques_have been developed.-to perform global, multi-level optimiza-
tion. Most of these fall into two basic categories; algebraic methods and Boolean methods

(17). Before we begin a detailed discussion of these two methods we need to address a

more basic problem, namely, how to represent the system that we wish to optimize.
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Figure 3.7. Multi-Level Boolean Network

3.3.2.1 Network Representation. Typically we think of a circuit specifi-
cation as a system of boolean equations (see section 2.3). This system of equations can
be described in terms of a Boolean network. A Boolean network is a representation of a
combinational logic circuit that describes the desired behavioral characteristics of a given

circuit design (see figure 3.7). According to Brayton:

A Boolean network is a directed acyclic graph. Associated with each node
of the graph is a variable, y;, and a representation of a logic function, f;. A
directed arc fromnode 7 to node 7 is in-the graph if node j uses the variable y;
explicitly in the representation f;. (17)

In more general terms a network representation can be visualized as a transformation
process that accepts primary input variables, acts on these variables at a variety of levels,
and then produces primary output variables that are a function of the inputs. We can think
of this representation in the same sense that we think of a PLA or SOP as a representation
of a circuit. Our goal is to seek a representation that facilitates the use of global techniques
to optimize multi-level logic circuits. Any network representation can be used as long as

the values of all outputs, corresponding to inputs not in the don’t care set, are equivalent.
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3.3.2.2 Node Representation. Brayton points-out that ~very node in a
Boolean network has associated with it a representation of a logic function. The way
this function is represented is extremely important. Although any valid representatinu is

allowed, some representations are preferred because they are

¢ more efficient in memory
¢ more indicative of the complexity of the final implementation

o more efficient to manipulate

It is interesting to note that this issue does not appear in two-level theory since the initial
representation and the final implementation are both in a SOP form. However, for multi-

level implementations there-are a number of choices available.

Sum-of-Products. Representation of a node as a SOP is probably the most
common form. Manipulation techniques based on two-level (SOP) forms are well estab-
lished as a result of efforts in PLA optimization. Most logic designers are also more
comfortable working with standard AND, OR and NOT gates. “Even though we may
wish to represent logic in some other way, present techniques generally require conversion

to a SOP form, manipulation with developed algorithms, and conversion back (17).”

Factored Forms. Factored forms are a more natural representation for multi-

level logic. An-example of a factored form is
(ab+be)(c +d'(e + ac)) +(d+ e)(fo) -

“A factored form is isomorphic to a tree structure, where each-internal node is an AND or
OR operator and-each leaf is a literal. This leads toa simple and efficient multilevel imple-
mentation of the function-of the node (17).” In addition, by simply counting the number
of literals in a factored form, one can get an accurate idea of the complexity of that func-
tion. This provides an important heuristic when considering whether or not a particular
transformation improves are worsens the overall complexity. Another argument in favor
of factored forms is that they implicitly represent both the function and its complement.

In other words a complemented factored form can be obtained, using DeMorgan’s law, by
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converting the ANDs to ORs, and vice versa, and negating the literals. This produces
the complement of the factored form which has the same literal-count. This is in sharp
contrast to the' SOP form where the number of products in a function can be exponentially
larger than the number of products in that function’s complement (17). One problem
with a factored form is that it is difficult, if not impossible, to know if the factored form
is optimal. Another difficulty with this approach is that effective methods to manipulate
factored forms do not exist. However, to fill this void a number of research projects are

underway (17).

Binary Decision Diagrams. Binary decision diagrams (BDDs) are a rel-
atively new and promising development in the logic optimization field. They basically
involve a graph-based approach to representing logic circuits. A BDD is best described

with the use of an example as shown in Figure 3.8 (72).
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A BDD represents a logic function as an acyclic graph. The root node, labeled z,,
represents the entire function and the leaf nodes represent the functions 0 and 1 respec-
tively. Each node has two children which represent the new function created when the
variable in the parent function (node) is set to 0 or 1. The output value of any function
can be found by tracing the assignment of values to its inputs through the graph. It is
interesting to note in Figure 3.8 that when z; = 0 it doesn’t matter what z; is. This is
shown explicitly in the Decision Graph but is‘implicit-in the BDD. For a given ordering of
the variables, a BDD represents a canonical form. It is forced to be reduced in the sense
that if two nodes represent the same function, then they must be the same node. Because
of this characteristic, BDDs are often used to see if two multi-level networks are equiva-
lent. If they are, both would have identical BDDs. In addition, because of its canonical
form it occupies less space and is easier to- manipulate using graphical techniques. It has
been found that the ordering of the variables can have a drastic affect on the size and
the shape of the BDD. As a result, numerous heuristic techniques have been developed
to help find the optimal ordering of variables. It was shown by Bryant (20) that most
logic operations on BDDs can be done in linear or log-linear-time-in terms of the number
of nodes in the BDD. Brayton describes a number of extensions to BDDs to handle in-
completely specified logic functions, multivalued variables, multivalued outputs, and even
if-then-else directed acyclic graphs (17). Overall, BDDs are providing an effective new
representation for Boolean functions. As algorithms are developed to take full advantage
of this representation, significant improvements in current optimization systems are likely

to be realized.

3.3.2.3 Basic Operations. While the methods may vary, the goal of multi-
level global optimization systems remains the same: to transform an initial circuit repre-
sentation into an optimal one. There are a-number of basic operations used to accomplish
this. It is important to note that these operations could apply equally to algebraic or

Boolean methods. Listed below are five of the most common:

Decomposition. The process-of decomposition transforms a single Boolean

function into a-collection of new Boolean functions. The following example (17) shows the
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process of translating

F=abc+ abd+d'cd' +b'dd

to

F = XY+X'Y
= ab

Y = c¢i+d.

We can see from the results that the two-level representation was replaced with a multi-level

representation. Note that the fan-in of F was reduced fiom four terms to two.

Extraction. The extraction operation is related to decomposition except
that it applies to many functions. This transformation process seeks to identify and utilize
common subexpressions among the funcgions. It creates intermediate functions with which
the original functions.are expressed. In terms of our Boolean network, we can look at this
operation as one which creates new nodes to simplify the-overall function representation.

As an example (17) if we apply extraction to the following three equations

(e +b)cd+e
(a+ b)e
H = cde

one result yields

= XY+e
= X¢

H = Ye

X = a+b

Y = e,

where X and Y are newly created intermediate nodes.
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Factoring. Factoring is the process of creating a factored form from a Boolean

function expressed in a SOP form. For example (17),

F=ac+ad+bc+bd+e

can be factored to

F=(a+b)c+d)+e.

The goal of many optimization techniques is to find a factored form with the minimum

number of literals.

Substitution. This operation, often called resubstituition, is the process of
expressing one function in-terms of its inputs-and another function. In the-example shown

below (17), the substitution of

G=a+bd
into
F=a4bc
yields
FP=G(a+c).

In terms of our Boolean network, this operation creates an arc from the node of the function

being substituted (G) to the node of the function it is being substituted:into (F).

Collapsing. This operation, also called elimination or flattening, is essentially

the inverse of substitution. It eliminates subfunctions by placing-them back into the.original

expression. For example.(17), if




then collapsing G into F results in

ac + ad + be'd’

G = c¢+d.

If node G isn’t an output, and no other function in the Boolean network depends on G,

then G can be eliminated resulting in a network with one less node.

To implement all of the operations described above, techniques which are very similar
to division and muitiplication are used. “In fact, division plays a key role in multi-level
logic optimization (17).” The concepts of division will be discussed in some detail as we

take a closer look at the distinction between algebraic and Boolean methods.

3.3.2.4 Algebraic Methods. The choice between using algebraic methods
and Boolean methods depends largely on the desired optimality of the result and the
limitations on the time needed to produce it. Boolean methods generally produce a result
that is closer to the global optimum but at the expense of increased computational intensity.
Algebraic methods have proven to be much faster and can produce adequate, though not
necessarily optimal, results. The challenge facing most designers is to find the most effective
way to apply the various methods available to produce a quality result in a reasonable
amount of time. The most commonly used approach to multi-level synthesis involves the

following steps (17):

1. minimize each logic function to obtain ar algebraic expression,

2. perform algebraic operations, including decomposition, extraction, factorization, re-

substitution, and elimination, on these expressions,

3. optionallyiterate steps 1 and 2. In some cases-Boolean operations are used sparingly

to improve the results-but without significantly affecting the efficiency of the system.

Algebraic Division. To understand the concept-of-algebraic division we need
to first introduce some basic definitions and terminology (18). If we express-a function in

SOP form as f = f; + fo 4+ - -+ fu then each term J; is referred to as a cube. The algebraic
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product of two expressions f and g is only defined if f and g depend on a disjoint set of
variables. The algebraic product is the sum of all possible cross-terms f;g;. Since f and
¢ have disjoint variable sets, no zero products can occur (a variable is never multiplied by

its complement).

The algebraic quotient f/g is required to depend on variables other than those on

which g depends. It is defined to be the largest expression such that

f = (fla)g+r (3.6)

where 7 is the remainder. Here the product of (f/g) and g must be algebraic, and the
right and left sides of the equation are required to agree as expressions, not just logical

functions. As an example (18), if

f = AB+ AC+ AD+ BC+BD
g = A+ B,
then
flg=C+D
since

f=(A+B)C+D)+AB.

According to Brayton, “By using sorting techniques, the computation of the quotient f/g
can be carried out very efficiently. In fact the division requires only O(n log n) steps, where

n is the total number of cubes in f and g (18).”

Weak Division. Weak division is a specific example of algebraic division. It
uses algebraic techniques to find divisors that are common to two or more functions. The
term “weak” refers to its comparison with the more powerful technique of Boolean division

(17). The following descriptions and examples of weak division are, for the most part,

a summary from the article “Library Specific Optimization of Multilevel Combinational

Logic” by Karen Bartlett and Gary Hachtel (2).




Finding common subexpressions among functions enables their logic to be shared
and also leads to the formation of a multi-level strucvure that is-often more efficient and
easier to implement in a desired technology. Weak division is an iterative process which

typically preceeds in a method similar to that shown below:

procedure Weak_division

begin

/* Decomposition */

vhile (common subexpressions exist)
- Generate candidate subexpressions for current functions
- Determine eligible subexpressions
- Select "best" disjoint subexpressions
- Associate new intermediate variables with subexpressions

and substitute
end while

- Collapse subexpressions referenced by only one function

/* Factorization */
for each function

- repeat above loop for single function
end for

end Weak_division

Through a careful analysis of this algorithm, we discover that it is an iterative process
consisting of four distinct steps: the generation of candidate subexpressions, the pruning
of eligible candidates, the selection of the best disjoint subexpressions and the substitu-
tion of these-subexpressions into the function which they divide. When we substitute a
subexpression back into a function, there may exist new divisors which are expressed in
terms of this new intermediate variable. Because of this, the iterative process continues
until there are no more divisors of sufficient merit to warrant substitution. Weak division
is broken down into two distinct phases, the-decomposition of the system of functions and

the factorization of each individual function. As a simple example, the result of applying




the weak division algorithm to the functions

fl
f2

aef + bef + cef

aeg + beg + deg

yields

fl
f2

Aef
Beg

= C+c¢
= C+d
= a+b.

We can see that the outputs f1 and f2 are expressed in-terms of the inputs and the newly

created intermediate variables.

Kernels. One of the goals of global optimization systems is to extract a
manageable set of promising divisors which is rich enough to allow all the common subex-
pressions to be located. For this reason the concept of kernels was developed (18). The
set of kernels of an expression f is defined as the set of all quotients f/c such that cis a
cube and f/cis “cube-free”. As an example ABC + ABD is not cube-free since it can be
expressed as AB(C + D). However, C 4 D by itself is cube-free. We note that in general
it would be fairly easy to find a cube that is-a divisor but much harder to find a divisor
that is cube-free. This is the motivation behind creating the concept of kernels. Many
techniques have been developed to extract a set of kernels from a system of functions and
then use these kernels to prouuce an optimal or near-optimal factored form for the Boolean

network.

Algebraic Algorithms. “The operations of extraction, decomposition, fac-
toring, and substitution can be carried out quite effectively in the algebraic domain using
weak-division and kernels (17).” The concept behind substitution was described briefly

earlier. Algebraic substitution involves dividing the function f; at node i in *he network by
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a function f; (or by f]) at node j. If it is found that f; is an algebraic divisor of f; then

f; is transformed into

fi=(fil )i+ 75 (3.7)

similarly for f{. Since ideally we attempt this for every pair (f;,f;) in the network there
may be as many as 2n? algebraic divisions where n is the number of nodes in the network.
Fortunately there are a number of techniques available which can identify if a function
is not a potential divisor (17) and thus the numerous possibilities can be reduced to a

manageable set.

From our earlier definitions of factorization and decomposition we see that the basic
operations involved are the identification of a divisor and division of a function by that
divisor. Decomposition is basically identical to factoring except that divisors yield new
nodes in the network. These operations-can be accomplished in an algebraic domain by
using algebraic division and in particular weak division. Since heuristics are generally used
to improve the efficiency of these processes, they can not be guaranteed to find the optimal

solution,

The extraction operation identifies common subexpressions and manipulates the
Boolean network accordingly. Algebraic decomposition and substitution can be combined

to provide an effective extraction algorithm.

Typical Synthesis System. The algeb, aic techniques we have described so
far, in conjunction with a few boolean simplification techniques, can be used to create a

complete logic synthesis procedure. A typical sequence of operations described by Brayton

(17) is shown below:

1. Collapse incoming data. As usual, those intermediates whose values exceed a given
critical amount are not pushed. back. By setting this cutoff higher orlower, we can

control the degree to which the original decomposition is preserved.
2. Perform Boolean simplification, using the implicit don’t care sets.

3. Extract common subexpressions. Even subexpressions with fairly low value should

be extracted, since they help to disclose other subexpressions.
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4. Collapse again. Any intermediates created above which prove to be of little value

are now removed.
5. Simplify again, using don’t care sets.

6. Decompose the logic into functions simple enough to be implemented in single circuits

in the target technology.

7. Collapse one final time. At this point, ao not re-substitute any expression if its
removal creates a function which can nolong : be realized as a single circuit. At the
same time, attempt to reduce the number of circuits and delay stages by trying to

re-substitute all but the most valuable intermediates.

8. Design circuits for each function in the network.

3.3.2.5 Boolean Methods. While algebraic techniques ofter the advantage
of increased speed, it is often at the expense of the quality of the solution. When optimal or
near-optimal results are a critical objective, Boolean methods are used, often'in conjunction
with algebraic techniques. Boolean methods treat the logic expression as a true logic
function. This enables one to take maximum advantage of Boolean identities and any

“don’t care” conditions that may exist.

Boolean Division. Boolean division is much like algebraic division with one
distinct exception. We remove the restriction that the two expressions f and g must depend
on a disjoint set of variables. Thus it is possible for zero products to occur (a variable is

multiplied by its complement). For example,
(a4 b)(c+ d)=ac+ad+ bc+ bd
is an algebraic product and both

(a+b)(atc¢) = atactab+tbe
(a+8)(' +¢) = ab+ac+be




are Boolean products. Thus in reference to our formula for division (3.6), when the product
(f/9)g is an algebraic product, then algebraic division takes place. Otherwise (f/g)g is a

Boolean product and Boolean divisi-:.: takes place.

One Boolean division technique that applies to problems in which the divisor is a
term was introduced by M.J. Ghazala (45) and later expanded on by F.M. Brown (22).
Given a function f and a divisor g where g is a term, this technique defines the quotient
of f with respect to g to be the function formed from f by imposing the constraint g = 1

explicitly. As an example, let the Boolean functions f and g be given by

fw,z,9,2) = wzz+azy'z +wa'z

wy'

g(w,y)

The quotient of f with respe.  g-is

fla=flwy = f(Q1,2,0,2)
= g +2'2.
Boolean Algorithms. Some of the algebraic algorithms can be converted to

Boolean algorithms by simply replacing algebraic division, in the operations discussed, with
Boolean division. Boolean resubstitution is a common example. In the Boulder Optimal
Logic Design system (BOLD) it is used in conjunction with algebraic decomposition to
improve the quality of the results. In some cases the problems associated with Boolean
techniques (namely the computational intensity) are overcome with the application of
heuristics to the process. We must be careful so that the loss of optimality by using

heuristic technic.aes does no% outweigh the benefits of a Boolean approach.

Spectral Methods. This is a-rather new and interesting approach to Boolean
minimization. It seeks to transform the input space B™ into one represented in a different
basis so that the-functions have a more obvious and simple implementation. For example,
if function were transformed into an AND or XOR, then the implementation requires only

one gate plus the logic to_perform the transformation. Brayton goes on to describe spectral
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methods as follows:

An interesting way to look at this topic is to envision the Boolean n-space as a
Boolean cube, and a Boolean function f on this space as a set of vertices on this
cube. All vertices where f = 1 are given a black dot. The objective of the input
transformation is to rotate sequentially and transform (like a Rubik’s cube) the
faces of this cube so that most of the black dots are moved to or near the same
face. The transformations of the faces represent intermediate logic functions
which create an initial decomposition. When the function is expressed in terms
of those intermediate variables, it is much simpler. For example, if all the black
dots occupy, after the transformation, an entire face or cube of the space, then
the function can be implemented as a single AND term. (17)

More detail on this unique approach can be found in (17) and its associated references.

Recursive Methods. A recursive realization of a combinational logic circuit
allows selected outputs to act as inputs or intermediate inputs to another output function.
This concept is illustrated in Figure 4.2. The goal of this technique is to take advantage
of any redundancies or existing logic in the circuit to reduce the overall circuit cost. The
challenge lies in carefully selecting the ordering and dependencies of the equations to
generate an optimal solution. This optimization procedure typically produces a result
with a multi-level structure. However, we will continue to-call it a “recursive realization
technique” to differentiate it from the more classical multi-level optimization procedures.

The details of this technique are discussed in Chapter 4.

3.3.2.6 Global Optimization Systems. A variety of global optimization
systems have been developed over the years and many of them have proven to be quite
successful. “A distinguishing feature for most of these systems is the extent to which they
are able to-exploit the degrees of freedom of the design problem in the optimization process
(17).” Below is a brief description of some of the most notable systems. The information
has been extracted from articles on-these systems. For a more detailed understanding refer

to the associaled references.

MIS. The Multilevel Logic Interactive Synthesis System (MIS) follows a global
optimization strategy, making use of a variety of algorithms including decomposition, fac-

torization, minimization, and timing optimization (14). It can be operated interactively
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or incorporated as a batch routine in other automatic digital systems. It starts from the
combinational logic extracted from a high-level description of a macro-cell and produces a
multi-level set of optimized equations which preserves the original input-output behavior.
Its optimization algorithms focus on improving both the area and propagation delays. It
first optimizes with respect to the area and then modifies the circuit, at some cost, to meet
the specified timing constraints. While it has been used primarily for CMOS designs, its
algorithms are flexible enough to support a variety of target technologies. MIS is organized
as a set of operators which act on the Boolean network and are controlled either interac-
tively or by a predefined script. The system is capable of producing fast results or spending
additional time to produce results that are closer to optimal. MIS currently makes use of
don’t care conditions only by collapsing the network to two levels and then making use of 2
two-level minimizer. This places some limitations on MIS. Don’t cares can only be used for
those networks that can be represented in two-level logic with reasonable efficiency. Also,
MIS is unable to use the don’t care information thatis implicit in a multi-level description
of a network. While this system incorporates primarily algebraic techniques, the design
team has explored using some Boolean methods such as Boolean resubstitution to improve
the overall results. The system has been written in C and run on Unix-based workstations

and DEC and IBM mainframes.

BOLD. The Boulder Optimal Logic Design System (BOLD) is a system de-
veloped-to map combinational logic optimally into standard cell or CMOS gate technologies
(9). BOLD incorporates a highly modified version of ESPRESSO (called ESPRESSO_MLT)
which has been tailored specifically towards the optimization of multi-level Boolean net-
works. As in MIS, this system also-utilizes the relatively new optimization procedure known
as Boolean resubstitution to provide results that are closer to optimal. These improve-
ments, coupled with a new method for multi-level tautology checking, makes this system
highly competitive with other optimization systems. While BOLD and MIS are similar in
a lot of respects, there are some differences worth noting. The result of mapping from the
behavioral description-language CHDL into a multilevel structure can be automatically

mapped back to permit more accurate timing verification. BOLD contains some Boolean

algorithms which are potentially more powerful but also slower. BOLD operates under a




C-Shell and includes features which allow a user to make inquiries about literal cruats,
levels of logic, circuit structure, and critical-path delay times. BOLD also jucorporates
a tautology checker that verifies the equivalence of the logic after each *ransformation.
Experimental results have shown that BOLD can be extremely competitive with MIS, out-
performing it in a number of cases. Designers attribute this to the greater power of its

optimization primitives.

SOCRATES. A recent trend in optimization systems has been to combine the
features of both global and local optimization into one hybrid system (4). SOCRATES has
taken that approach. As is illustrated in Figure 3.9, SOCRATES begins with a system of
equations that are extracted from a behavioral specification. A two-level minimization is
then performed on these equations using the ESPRESSO routines. This reduced system of
equations is then decomposed into a multi-level structure using weak division. At this point
the Boolean network begins to reflect the structure of the final circuit. SOCRATES was one
of the first optimization systems to make timing a critical design consideration. Timing
optimization algorithms play a key role in the development of the network structure at
this point. After a reasonable structure is developed, multi-level minimization techniques
are employed to improve on this structure. These techniques take maximum advantage
of any don’t-care conditions introduced as a result of the decomposition into a multi-
level structure. The next step does a raw conversion from the AND-OR representation
to the particular target technology provided in a user-supplied library. Finally, the last
step utilizes-a rule-based system to perform local transformations in order to optimize-the
circuit. These techniques were discussed previously. 1ne SOCRATES system has proven

to be one of the most effective because it combines the best features of all the techniques

we have discussed into.one integrated system.
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CARLOS. GARLOS is an automated multi-level logic design system for CMOS
semi-custom integrated circuits (75). Like SOCRATES, it also is a hybrid system, com-
bining both local and global optimization techniques. Its optimization process consists of

three steps:

1. two-level multiple output logic minimization

2. multiple output and multi-level factorization

3. technology specific transformations.

The basic design objectives were to reduce the amount of gates necessary to realize the
circuit and toreduce the propagation delay along critical paths. The system accepts input
in the form of a truth-table representation and generates an optimized multi-level. multiple
output logic circuit, which satisfies the given fan-in and fan-out constraints. Its multi-
level synthesis system incorporates two factorization techniques which complement one
another. The first is based on the “kernel algorithm” developed by Brayton and McMullen
(19) which efficiently handles multi-output functions. A second factorization phase covers
the input and-output portions of the circuit separately. Factors are iteratively substituted
until all fan-in and fan-out constraints are satisfied and no proper common factor exists.
Finally a technology mapping process is used to perform local transformations into the
target technology. Results have show a 30 to 50 percent improvement over a minimized

two-level representation (75).

MACDAS. MACDAS (Multilevel AND-OR Circuit Design Automation Sys-
tem) designs a multi-level circuit with fan-in limited AND-OR gates (91). This system
converts a given specification into a two-level AND-OR circuit. Input variables are then
paired to produce a two-level AND-OR circuit with two-variable function generators. This
is-the part of the design-process that sets this system apart from most others. The authors
have developed efficient techniques to handle what they call “two variable function gener-
ators” or TVFGs. Next, some of the outputs are complemented to obtain a circuit with

fewer AND gates. The circuit is then converted to a multi-level, fan-in limited AND-OR
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circuit. Finally, the circuit is further optimized using local transformations. The system
has been programmed in C and Fortran and runs on a personal computer. Experimental
results have shown that MACDAS is a useful tool in the design of multi-level circuits,

especially for arithmetic circuits.

Yorktown Silicon Compiler. The Yorktown Silicon Compiler was designed
as an automated system that would go from an initial behavioral specification to a final
structure that could be implemented on a silicon chip (23). The circuit structure is gener-
ated automatically from a behavioral description. The final structure consists of registers,
ports and blocks of combinational logic and their interconnections. A specification in a
specialized Yorktown Logic Language-is generated for each block of combinational logic.
The final logic is produced by the Yorktown Silicon Editor which incorporates some of the
latest multi-level logic synthesis techniques. This system comes close to realizing our ul-
timate goal of an efficient synthesis/optimization program that takes accepts a behavioral

specification and produces an optimal silicon chip design.

BEAT_NP. BEAT.NP is not an optimization system in itself but rather a
tool designed to improve the capabilities of BOLD (26). It has long been known that
the-optimization problem is one of exponential (non-polynomial - NP) complexity. While
this problem may not be apparent for smaller circuits, it becomes quite-obvious when the
numbers of inputs and outputs to a circuit are increased. One way of dealing with this
problem is to use algebraic methods to find a quick solution. But to do this we often
sacrifice optimality. BEAT_NP was designed as a way to partition a large circuit into
smaller ones that could be handled more efficiently by the optimization system. Once-each
of the partitions has been optimi.ed, the circuit is reco1 rosed with all of the partitions.
Naturally, one-might expect this to-introduce additional costs because one no longer has
a true global optimization system. However, the benefits of this tool often outweigh the

costs. It has been found that jobs that require weeks of cpu time without partitioning

can be donein a matter-of heurs. It generally achieved 70% of the minimization in only

one-third the time (26).




3.4 Sumnary

We have looked at both two-level and multi-level optimization systems, identifying
both the benefits and drawbacks of each. Multi-level optimization systems can produce
significant reductions in the costs associated with a circuit but at the expense of increased
complexity and time. As the understanding of multi-level optimization techniques ap-

proaches that of two-level systems, revolutionary improvements will result.

We have also compared and contrasted the two basic approaches to multi-level op-
timization: local and global. Each approach has its own unique advantages. It was found
that systems such as SOCRATES could effectively utilize both approaches during differ-
ent phases of the design. Global techniques are preferred for the technology independent
portions and local techniques preferred for optimally mapping a circuit into a given tech-

nology.

We have discussed the two types of global minimization: namely algebraic and
Boolean. Once again it was discovered that each had its-own advantages and the most
successful systems incorporated both techniques. As we are able to develop more efficient
Boolean operations, this will likely become a more popular method because of its ultimate

potential to find a global optimum.




IV. Recursive Realizations of Combinational Logic Circuits

4.1 Introduction

With an adequate background behind us, we can now address the central topic of
this research effort: building a recursive optimization system. A global approach was
investigated, considering all of the equations that specify the circuit at once. This approach
was also Boolean-based, taking full advantage of Boolean reasoning principles to achieve
the desired results. Specifically, this optimization system involved the recursive realization

of combinational logic circuits.

The challenge we face is how to take a set of specifications that describe the desired
behavior of a multiple-output system and transform them into an optimal circuit represen-
tation. We can think of a multiple-output circuit as a system consisting of an input-vector
X = (21,22, ++,Zm) and an output-vector Z = (21,29, ++,z,) as shown in Figure 4.1.
Each signal z; is a binary stimulus applied as an input to the circuit while each signal z;
is the binary response resulting from some combination of the input signals. We will limit
ourselves to the discussion of combinational ¢ircuits, whose outputs at any given time are
a-function of the inputs at that time; no dependencies on previousinputs are allowed. The

system illustrated in Figure 4.1 can be represented as
Z=F(X). (4.1)

Typically, the optimization of such a system involves reducing each of the equations
fi, f2,++, fn to a minimal fo;m. However, this approach fails to take advantage of any
global “don’t-care” conditions or redundancies in the circuit. Consequently we will inves-

tigate an alternative approach to the optimization problem.

We can begin by asking ourselves what would happen if we allowed the output signals

to-be used in conjunction with inputs to produce other outputs. In other words, we allow

our system to have the form

Z=FX,2). (4.2)
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Figure 4.1. Multiple-Output Circuit

It turns out that this approach can significantly reduce the the overall cost of a circuit
while overcoming problems such as fan-in limitations. Making effective use of available
signals, including outputs, is not a new idea. This concept received considerable interest,
from early works by the Staff of the Harvard Computation Laboratory (54) and Kobrinsky
(63) to more recent efforts by Ho (56), Mithani (78), Pratt (84), and Brown (22). Brown
devotes a whole chapter in his book Boolean Reasoning to one method of utilizing available
outputs; this method involves the recursive realization of combinational logic circuits. He
presents not only a means of synthesizing a recursive realization of a circuit, but also an
approach to automating the process. Much of the following chapter is based on Brown’s

book and numerous personal discussions.

4.2 Recursive Realizations

While talented designers often find ways to utilize existing signals (including outputs)

to produce new ones, most of their techniques rely on skilled visual cognition or heuristic
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Figure 4.2. Recursive Realization of Combinational Logic

knowledge. These techniques are extremely difficult, if not impossible, to automate. The
concept of a recursive realization of combinational logic was developed-out of this need for
a consistent, repeatable, algorithmic process—a process capable of transforming a circuit
specification into a-multi-level structure that makes optimal use of existing output signals.
This structure, ard its nderlying form, are illustrated in Figure 4.2. It is important to
note that at least one o the outputs in Figure 4.2 (in this-case z;) must depend entirely
on inputs. Subsequent outputs can consist of a combination of inputs and previously
defined outputs (e.g., z3 ~n depend on any input and/or z; and/or z2). This process of

defining outputs and then using those outputs in the definitions of subsequent ountpuits has

a recursive quality.




4.3 A Recursive Optimization System

A recursive optimization system should be capable of accepting a behavioral speci-
fication and producing a recursive realization of the form shown in Figure 4.2. We need
to ensure that this specification represents a combinational circnit (not a sequential one).
In other words, no output should be defined as a function of itself. Boolean reasoning
techniques are applied at various stages in the development of the recursive optimization

system. This approach, developed by Brown (22), involves five-basic steps:

1. Transform a behavioral specification into a system of Boolean equations.
2. Reduce the system of Boolean equations to a single equation representing the circuit.

3. Perform a dependency analysis to find the minimal determining subsets' (MDSs) for

eacu output.
4. Assign costs to each of the MDSs.

5. Search the state space for a1 optimal solution based on the costs incurred.

Each of these steps will be described in more detail in the sections that follow.

4.4 Specifications

There are a variety of ways that the desired behavioral characteristics of a particular
system can be represented. They can be in the form of a high level description language
such as VHDL. Specifications can also-be verbal descriptions, predicate calculus formulas,
exhaustive enumerations of input-output pairs, truth tables or a system of Boolean equa-
tions. The behavioral characteristics of an AND gate are used in Figure 4.3 to illustrate

some of these specification forms.

Through experience, it becomes obvious that truth-tables and Boolean equations
are far more convenient than verbal descriptions or exhaustive enumeration. While a
truth table helps us to visualize the desired input-output characteristics, Boolean functions

provide a compact form that can be easily manipulated using Boolean reasoning techniques.

defined in section 4.6




VERBAL DESCRIPTION

The output of an AND gate is high if and only if all of the
inputs are high; otherwise the output is low.

PREDICATE CALCULUS FORMULAS

Vzq, 22, 21(21 & 21 A 23]

EXHAUSTIVE ENUMERATION
Input: X = (%1,%2)
Qutput: Z =2

F = ((0,0),0), ((0’ 1),0),((1,0j, 8),((1, 1)s 1)

TrRUTH TABLE

T 2 2
0 0 0
0 1 0
1 0 0
11 1

BooLEAN EQUATION(S)

21 = T1%9

Figure 4.3. Specification Forms For nn AND Gate
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Table 4.1. Incomplete Specification

4.4.1 Complete Specifications. One important characteristic of a specification
is not what it contains, but what it doesn’t contain. A specification is considered complete
if for every possible combination of inputs there exists one, and only one specified output.
Conversely, a specification is considered incomplete if a specific combination of inputs
results in ar output that can be either 0 or 1, or if a specific combination of inputs is
forbidden by the specification. Both of these are features of an incomplete system and

describe what we have referred to earlier as “don’t-care” conditions.

An example of an incomplete system is shown in Table 4.1. The “X” refers to an
output that can be either 0 or 1. The input vectors (1,0,0) and (1,1,1) result in an output
that can be either 0 or 1. Since the output does not depend on the input, these vectors
both represert don’t-care conditions. We also note that there are two combinations of
inputs (rows in the truth table) that are missing: they are (0,0,1) and (0,1,1). These too

represent don’t-care conditions.

Don’t-care conditions are extremely important because they present the designer
with additional degrees of freedom for optimizing a network. These don’t-care conditions
are ezplicit in the sense that they can be extracted directly from a specification. Recently
attention has focused on additional degrees of freedom that are implicit to a system (10)
(17). These don’t-care conditions are often not readily apparent and typically arise from
a hierarchically defined specification. In the context of this research effort, we will assume
that the specification contains no definitive information concerning the structure of the sys-
tem. Fortunately by utilizing Boolean reasoning techniques, we can take global advantage

of the don’t-care conditions that exist.




4.4.2 Tabular Specifications. Another important aspect that we need to con-
sider is whether or not a given specification is tabular. A tabular specification is one that

can be represented, in its entirety, by means of a truth table (22). In more definitive terms,

a specification in normal form,

¢($1,222,. c o3&,y 21,2250 ')zn) =1 ’ (4'3)

is tabular if and only if for each A € {0,1}™, the discriminant ¢(A, Z) is either zero
or reduces to a term on the z-variables (22). Currently, almost all circuit synthesis and

optimization techniques require a specification to be tabular.

An example of a non-tabular specification can be shown using the information nec-

essary to convert between a JK and an RST flip-flop. This is expressed by the system

Q’J +- QK’ S+ Q'T + QR + QRIT’
0 = RS+RTH+ST

where the inputs X are {J,X,Q} and the outputs Z are {R,S,T}. This system can be

converted to the normal form of specification
LN, Q,R,S5,T)=1
given by

&(J,K,Q,R,8,T) = JQST +JQRST+JQRST
+K'QR'T + KQRS'T + KQR'S'T .

The discriminants of ¢(J, K, Q, R, S,T) with respect to J, I and Q are

#(0,0,0,2) = §'T
$(0,0,1,2) = R'T'
$(0,1,0,2) = S§'T'




#(0,1,1,2) = S'T'+R'ST
$(1,0,0,2) = R'S'T+ R'ST'
$(1,0,1,2) = R'T
#(1,1,0,2) = RS'T+ R'S'T
$¢(1,1,1,Z) = RS'T+ R'S'T.

Four of the discriminants above do not evaluate to either 0 or a term on Z. Consequently
the specification is non-tabular. However, it is important to note that any non-tabular
specification can be-decomposed into a collection of tabular specifications, each of which is
sufficient to describe the desired behavioral characteristics of the original specification. In
our example there are four discriminants with two terms each. By limiting a discriminant
to one term, there are 24 = 16 possible combinations of terms and hence 16 possible tabular
representations of the given specification. One such tabular representation in the normal

form of specification is

f(LK,Q,RST) = JK'QST +VK'QRT +JKQS'T +JKQS'T
+IK'Q'R'S'T + JK'QR'T + JKQ'RS'T + JEQRS'T .

The reason we need to introduce this topic is twofold. First, most digital design and
optimization systems aren’t capable of handling non-tabular specifications. We therefore
need to verify thét a given specification is tabular before proceeding with the optimization
process. Secondly, requiring a specification to be tabular places limitations on the freedom
of the designer to describe a system’s desired behavioral characteristics in the most general
terms. As automated optimization systems improve, we have the potential to take advan-
tage of a non-tabular specification by carefully extracting the tabular representation (one
of many) that leads to a least-cost solution. This js currently an active area of research

(66) and could provide some improvements to optimization systems in the future.




4.5 System Reduction

For our recursive optimization system we require that the specification be tabular and
consist of a system of Boolean equations. This system of equations undergoes a Boolean

reduction process that transforms it into a single Boolean equation of the form
o(X,2)=1. (4.4)

Equation (4.4) is veferred to as the normal form for the specification. The process of
transforming a system of equations into the normal form was discussed in Section 2.3.2.

As an example, this process transforms the system

[
Z] = 214 2o23+ 2213
/ /
22 = xT2+ 223 (4.5)
N ]
23 = 0223

into ar -equivalent specification of the form f(xy, 22,23, 21,22, 23) = 1, where f is given by

1,0 10 ) ol W / 2 !
[ =aoa3212p23 + 21253212023 + T1T2T32 2223 (4.6)

! .7
+ T3 23 4 1212923 .

By reducing a specification to a single equation, global dependencies and don’t-care con-

ditions can be handled uniformly and systematically (22).

4.6 Dependency Analysis

For a multi-input, multi-output system, the number of ways to recursively combine
the inputs with previously defined outputs could become inordinately large. We find that
the number of possible combinations increases in an exponential (NP-complete) fashion
as a function of the inputs and outputs. Without proper constraints, designing systems

with even a moderate number of inputs and outputs could become too computationally

intensive using recursive means. We therefore seek ways to eliminate the necessity for




performing an exhaustive search through all of the possible combinations. At the same
time we must be careful that we don’t eliminate any combinations that may result in a

good global solution.

One way of constraining the number of possibilities is to develop effective heuristic
techniques. Our method accomplishes this by first performing a dependency analysis on
the system’s variables. We already know that all of the outputs can be expressed in terms
of their inputs, but additional dependencies can also be derived. Our goal is to find the

minimal determining subsets for each output. A determining subset for an output is a set

of inputs and outputs that can be used, in some combination, to produce that output. A -

minimal determining subset (MDS) is a determining subset from which the removal of any
variable would result in a subset that is no longer sufficient to describe the desired output.
For example, the output z; from the normalized equation (4.6) can be produced from any
one of three possible MDSs: they are {;,%3,23}, {#2,%3,%2}, and {22, 23}. While some
examples have shown that MDSs do not always yield an optimal solution, they do provide
an effective means of reducing the search space. Two techniques for deriving minimal

determining sets are summarized below (22):

4.6.1 Redundancy Elimination Technique. A redundancy elimination pro-
cess is one tecanique that can be used to find minimal determining subsets. To find the
minimal determining subsets for an output z, we begin by taking a Boolean specification
and reducing it to a single equation in normal form (f = 1). We then can express the

output as an interval 2 of the form

[9.h]={z|g< z< h}, (4.7)

where g and h are both Boolean functions. This interval has the effect of bounding the
number of possible functions that can be used to express the output z. g represents the

lower bound of the interval and is-given by:

g=fl7. (4.8)

2¢ee section 2.1,2
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h represents the upper bound of the interval and is given by:

h=flz. (4.9)

The interval represented by (4.7) is non-empty if and only if the condition g < h is satisfied.

Before we can calculate the minimal determining subsets, we need to understand a
related topic, mazimal redundancy subsets. Let X = z,,-- .2, denote the set of arguments
of g and h, and let S be a subset of X. S is considered a redundancy subset on an interval
if there exists at least one function on that interval in which all of the arguments of S are
redundant. An argument is redundant if it can be removed without changing the Boolean
formula to a non-equivalent formula. We consider S a maximal redundancy subset on the
interval if it is a redundancy subset on the interval and if it is not a proper subset of any

other redundancy subset on the interval.

Given a complete collection of maximal redundancy subsets, the problem of find-
ing the corresponding minimal determining subsets is trivial. Each minimal determining
subset, T, on [g, k] is nothing more than the relative complement with respect to X of a

maximal redundancy subset, S on [g, k] i.e.,

P=X-5. (4.10)

Since finding the minimal determining subsets; given the maximal redundancy sets,
is very simple, the major problem involves developing efficient techniques for finding the
maximal redundancy subsets. Although a variety of apprcaches have been used, thissection
will concentrate on a search-based technique developed by F.M. Brown (22). To find
the minimal determining-subsets, we perform a depth-first search, successively removing
variables from the interval-until the condition described in (4.7) no longer holds. That point
on the path, excluding the failure point, represents the set of redundant variables that can
be-removed without any effect on the-interval. The search process proceeds in a depth-first

fashion until all of the branches (possible combinations) liave-been explored. This results

in a list of maximal redundancy sets which-are then transformed into minimal determining




Subset Test Redundant?

o) vw'zy'z+vw'e'yy’ < vztvd'+wty+z yes
{v} wzy'z+w'a'y? < w4y+z yes
{v, w} zy'z+ 2y < y+z yes
{v,w,z} Yz+yz < y+z yes
{v,w,z,y} z+2 <z no
{v,w,z,2} Y+y <y no
{v,z} wy'z+w'ysd < w4y+z yes
{v,z,y} waztw'z < w4z yes
{v,z,y, 2} v < w yes
{w} vey'z+vzlyy < vzdvd'+y+z yes
{w,z} vy'z+vyd < y+2 yes
{w,z,y} vVz4vz <z no
{w, 2,2} vy+oy <y no
{w,y} vzz4vz'Zd < vzdovz'4z yes
{w,y,z} vYr+vs' < vz 4oz yes

Table 4.2. Development of Maximal Redundancy Subsets

subsets using (4.10). To illustrate this process, let us find the minimal determining subsets

for the specification described by the interval [g, h] where g and h are given by the formulas

g = vwzy'z+ w2yl

h = vet+vd' +w' +y+2.

The depth-first search process proceeds through the space of intervals derived from [g, h]
by the successive removal of variables as shown in Table 4.2. The maximal redundancy
subsets found with this search are {v,w,z}, {v,z,9, 2} and {w,y,2}. The corresponding
minimal determining . s are {y, 2z}, {w} and {v, z} respectively. The function intervals

associated with each of these minimal determining sets are shown in Table 4.3.

It becomes obvious that the efficiency of such an algorithm depends heavily on our
ability to determine if a given variable is redundant on a certain interval. Brown’s approach
to-removing variables from a Boolean equation-is based two-operators, ECON and EDIS

(22). These operators, which will be defined later, were developed to implement different

forms of a more general process called elimination.




Minimal Determining Subset ~ Function-Interval

{v, 2} [v'z + 92",y + 2]
{w} [w', w]
{v,z} [v'z + vz!,v'z + v2']

Table 4.3. Minimal Determining Subsets and Associated Intervals

4.6.1.1 Elimination. Elimination is one of the fundamental processes of
Boolean reasoning. Eliminating a variable z from a Boolean equation involves deriving
another Boolean equation that expresses all that can be deduced from the original equations
without any knowledge of z. If the deduced equation resulting from the elimination of =
expresses the same information as the original equation, we then know that the variable z
must be redundant. The concept behind elimination was first introduced by Boole over a
century ago (22). Its central point states, that if f(z) = 0 is any logical equation involving

the literal & with or without other literals, then the equation

fA)f@)=0 (4.11)

is true, independent of the interpretation of z. It represents the complete result of elim-
inating z from the equation above. In other words, to eliminate a literal & from a given
Boolean equation of the form f(z) = 0, we need to successively change z into 1 and «
into 0 and then multiply the resulting formulas together. Similarly, if f(z) = 1 then the
equation

f)+f(0) =1 (4.12)
is true, independent of the interpretation of z.

Elimination can be illustrated by removing one of the inputs from an AND gate
(22). An AND gate with inputs z; and z; and output z; can be characterized by the form
f(%1,%2,21) = 0 where f is defined by the equation

! /
f=alz + 2oz + 21222 .




The result of eliminating z2 from our equation is

g(zlazl) =0, . (4.13)

where g is given by

g = f(21,0,21) f(21,1,21)

(2121 + 21) (2121 + 712)

zy2 .

From ( 4.13) we can deduce all possible information about the AND gate in the absence
of knowledge concerning z,. This information is represented by the following equivalent

statements:

im = 0

s +2 = 1

znn £ m
(z1,21) € (0,0),(1,0),(1,1).

4.6.1.2 ECON and EDIS Operators. Armed with a basic understanding
of the concepts behind elimination, it is now possible to define two of the common operators

involving elimination (22).

ECON Let f : B® — B be a Boolean function expressed in terms of argumeats
T1,%2,...,Xn, and’let R, S, and T be subsets of {z1,22,...,2,}. We define the funziion

ECON(f,T), called the conjunctive eliminant of f with respect to T, by tlie ioliowing

rules:
(i) ECON(f,4) = f
(1) ECON(f,{z1}) = f(0,22,...,2s)  f(1,224...,2n)} (4.14)
(itt) ECON(f,RUS) = ECON(ECON(f,R),S).

4-14




called the disjunctire eliminant of f with respect to T, by the following rules:

(1) EDIS(f,¢) = f
(i) EDIS(f,{z1}) = f(0,22,...,2n)+ f(L,22...,%0) (4.15)
(i) EDIS(f,RUS) = EDIS(EDIS(f,R),S).

It isimportant to note that because of the way these functions are recursively defined,
they can be used to eliminate more than one variable at a time. This is illustrated in the

example shown below:

ECON(f(w,,y,2),{w,y}) = ECON(ECON(f(w,2,y,2),{w}),{y})
= ECON(f(0,2,y,2)- f(1,2,9,2)),{y})
= f(0,2,0,2)- f(0,z,1,z)- f(1,2,0,2)- f(1,2,1,2).

If T is a singleton set, i.e., if T = {z}, then the eliminants of f are related to the

EDIS Using the same notation as for ECON, we define the function EDIS(f,T),
, quotients f/z' and f/z as follows:

ECON(f,{z}),
EDIS(f,{z})

fla'fle (4.16)
fle'+ flz. (4.17)

It can be shown that the conjunctive eliminant of a function in Blake canonical form
with respect to a given variable is simply the sum of terms in that form that do not involve

that variable (22). In other words,

ECON(f,{T}) = Z (terms of BCF(f) not involving arguments in T') . (4.18)

4.6.1.3 Resultant of Removal of a Variable. Using the elimination-
operators described above, F.M. Brown was able to define the resultant of removal of

variable z from an interval [p, q] to be the interval [EDIS(p,{x}), ECON(q,{x})] (22). It

should be noted that the resuliunt of the removal of a variable from an interval is a subset




of that interval. It follows from this that z is redundant on [p,¢] if and only if the condition
EDIS(p,{x}) < ECON(g,{z}) (4.19)

is satisfied. If p is expressed in an arbitrary sum-of-products form and ¢ is expressed in

Blake canonical form, then

o EDIS(p,{z})is found by deleting z and z’ wherever they occur in a term (if either
z or «’ appears alone as a term, then EDIS(p,{z}) = 1);

o ECON(g,{z})is found by deleting any term in g that contains either z or z’; and

e condition (4.19) is satisfied if and only if each term of EDIS(p, {«}) is included in
some term of ECON(q, {z}).

Thic methodology was applied to the earlier example whose resulting search and variable-

removal steps were illustrated in Table-4.2.

Using the inclusion relation shown in (2.10) we can re-express the relation (4.19) as
EDIS(p{z}) - EDIS(¢,{z}) =0. (4.20)
This is often the preferred way to test the resultant of removal of a variable.

4.6.1.4 Summary of Redundancy Elimination Technique. We have
discussed this technique of finding minimal determining subsets in moderate detail because
it plays such a vital role in our recursive optimization system. To calculate the minima’
determining subsets from a given specification, we need to first reduce the system to a
single Boolean equation expressed in normal form. For each specified output we find the
corresponding interval on f that bounds that output. With each of these intervals, we
proceed with a depth-first search that successively removes variables at each level until all
paths have been explored. To removea variable from an interval, the elimination operators
EDIS and ECON are used. Once the variable is removed, we check to ensure that the
resultant of removal is non-empty, i.e., that the variable is redundant on that interval. As

shown in Table 4.2, when the test condition (4.19) fails, the variables removed up to that
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point constitute a maximal redundancy subset. Once we have the maximal redundancy
subsets, we merely take the complement of each subset, with respect to the set of all

variables in our original specification, to find the minimal determining subsets.

4.6.2 Opposing Literals Technique. Since minimal determining subsets play
such a key role in the recursive realization of combinational logic, it is worthwhile to explore
alternative techniques. One such techn ;ue, descrited by Brown, involves the calculation
of what he terms minimal u-determining subsets (22). We will assume that we are provided

a consistent Boolean equation of the form

f(zhx?a - ',xn) =1. (4'21)

Given a partition {{u},V} of {z;,...,2,}, we say that the variabic u is functionally

deducible from (4.21) if there ¢ . Boolean function g-such that the equation
v =g(V) (4.22)

is implied by (4.21). The following procedure will produce a sum-of-products formula, each

of whose terms corresponds to a minimal determining subset in terms ot u.

1. Express f/u and f/v' in a sum-of-products.form as follows:

M

flv = ZP: (4.23)
t—N-l

flv = Y g (4.24)
i=

where p1,...,ppm and q1,...,gnN are terms.

2. Associate with each pair (pi,g;) a sum of literals s;; defined by

sij = E (letters that appear opposed in p; and ¢;) . (4.25)




3. Define a Boolean function F, by the product-of-sums formula

F, = ﬁ IIYI LR (4.26)

i=1 j=1

4. Multiply out, deleting absorbed terms, to form a complement-free sum-of-products
formula for F,. With each of the terms in the resulting formula, associate a set of
arguments having the same letters; the resulting sets are the minimal determining

subsets with respect to the variable u.

The best way to illustrate this concept is with the use of an example taken from (22).

We begin with the system specification shown below:

d = ab+ac+be
s = a®be

© = abs'+d'b's.
This system is equivalent to an equation of the form f = 1, where f is given by

f = dbdds'v +ad'bedsu+ a'be'd su' +

ab'd'd'su’ + ab'eds'v’ + abc'ds’u + abedsu’ .

We begin by expressing f/u and f/u' as sum-of-product formulas as follows:

flu = ad'beds+abcds'
i

a'ted's' + a'be'd's + a'beds’ +

ab’c'd’s + ab'eds’ + abeds .
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We then carry out the labeling procedure described in Step 1

p=a'bed's ¢ =abt'cds

py = abc/ds' ¢, = a'bc'd's
q3 = a'beds’
g4 = ab'c'd's
gs = ab'cds’

ge = abeds .

The s;;’s that result from Step 2 are as follows:

sy=c+s sn=a+b+d
sig=b+ec sp=a+d+s
Siz=b+d+s saz=a+c
siu=a+¢ Sq=b+d+s
sis=a+d+s sys=b+c
sie=a+b+d s=c+s.

Carrying out Step 3 and deleting repeated factors, we have
Fu=(c+s)b+ec)b+d+s)atc)atd+s)atbtd).
The result of multiplying out and deleting absorbed terms (Step 4) is
F, = abc + c¢d + abs 4 bes + acs

from which the minimal determining subsets are {a,b,c}, {c,d}, {a,b,s}, {b,c,s} and
{a,c,s}.

We can see that this technique for finding the minimal determining subsets differs
radically from the redundancy elimination technique. Depending on the implementation,
it is possible that one or the other might operate more efficiently on a given specification.

Therefore it is important-that we explore the advantages and disadvantages of these two
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BoOLEAN FORMULA
f =a'bc+ab'e' + ab'c + abe

Two-LEVEL CIRCUIT REPRESENTATION

!

a
b ———
c

i

o e

S OR

12 inputs + 4 inputs = cost of 16
Figure 4.4. The Cost Based on Gate Inputs

methods in order to make an intelligent selection of the best technique to use.

4.7 Assigning Costs to the MDSs

One of our initial goals in developing the recursive realization technique was to reduce
the overall cost of our system design. We seek a measure of cost that is relatively simple
to derive from the form of a solution, yet provides a powerful heuristic that will guide us
towards an optimal or near-optimal design. While a variety of methods are used, we choose
as our cost-measure the gate-inpvt count. As its name implies, it simply represents the
number of gate-inputs that are present in a system. The cost of any given function in our
system will be the gate-input cost of that function if it were implemented in a minimal,
two-level, AND-to-OR circuit. We will assume that both the inputs and their complements

are available at a cost of zero. This technique of assigning costs is illustrated in Figure 4.4.

To relate a cost to a minimal determining subset, it is first necessary to find a SOP




Output | MDS Function Cost

U fi

2 {2223} z1 =234 25 2
2 {z12023} | 1 = @1 + zoza+ ahaly | 7
2 {z92322} 21 = 25 + 2223 4
22 {z123} 2n=z1+2 2
22 {z12223} 23 = 2iz3 + 2)29 6
2 {21222} 23 = 21 + z}27 4
2 {12321} 22 = 2} + z\z3 4
23 {z122} 23 =22 2
23 {3122583} 23 = a:ia:ga:a 3
23 {.’cla:gzl} 23 = x’lzgzl 3
z3 | {z12321} Z3 = 21232 3
23 {z22322} Z3 = T2%322 3

Table 4.4. Minimal Determining Sets and Associated Costs

formula composed solely of arguments contained in the minima! determining subset. This
can be accomplished using a variety of methods including ones that closely model the
Quine-McCluskey technique. Whatever the method, one must ensure that the two-level
representation is reduced to a minimal form. That way we can ensure that the cost is as

small as possible.

To emphasize these points, consider the system given in (4.5). The results of extract-
ing the minimal determining subsets associated with each output, generating a minimal
two-level representation from the arguments in the minimal determining subset, and cal-

culating the associated costs, are shown in Table 4.4.

4.8 Search for the Least-Cost Recursive Solution

Using the techniques we have described thus far, we can find the MDSs with respect
to each output of our specification and assign a cost to each. The problem now becomes
in what order we should select the outputs to produce an optimal recursive solution. First

we must recognize that the set of all solutions of a specification in the form ¢(X,Z) =1

Y
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can be represented by a general solution expressed as vhe system

(X)) <u < Bi(X)
(X ,u) Su < Ba(X,u1)
a3(X,u1,u2) Suz < Ba(X,u,u2) (4.27)

an(X’ul,uh---,un—l) Sup < ﬂn(xyul,u%“"un—l)

where (uy,ug,...,%,) it a permutation of the output vector (21, 22,...,2n).

From a general solution (4.27), we can construct solutions of the form

= fi(X)
i = fo(X,wm)

(4.28)
tp = fu(X,u1,u2,...,Un-1)

by independently selecting the functions fy, f2,..., fn that are implicitly represented in the
intervals displayed in (4.27). While the set of particular solutions represented by a genera:
solution is unique, the form of a general solution may vary widely from one permutation

of the output variables to another (22). Let us expand on an earlier example-to illustrate

this point.

Assume that the desired behavioral specification of a system is of the form

f(21,22,%3,21,22,23) = 1 (4.29)
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where f is given in (4.6). Choosing the “natural” permutation (uy, u2,u3) = (21, 22, 23) of

the output variables, a general solution of (4.29) is

IA

T+ zheh+ 2223 < 2 21 + zhah + 2223

Ty2hTaz) + 2i202h2) + 2izez3ny £ 2

IA

2hzo + zhz3 + 2}
1#2 TR TA (4.30)

! ] !
Z|T2232120 < 73 2425 + 2129 + TH252] + 21 2]

IA

zizaz3 + 2{2az + ziz221 .

There exists a large number of particular recursive solutions that can be derived from

(4.30). Among the simplest of these is

1.0
21 = 21+ 2973 + 2223
2 = T1T2+ 2] (4.31)
23 = 122,

for which the total cost is 7 4+ 4 4+ 2 = 13. While this represents an improvement over the

original system (4.5) whose cost is 7 + 6 + 3 = 16, it is by no means an optimal solution.

We find by modifying the order in which we recursively choose the outputs, and
by intelligently selecting the specific functions within each interval, we can often produce
better solutions. For example, the permutation (u3, u2,u3) = (22, 23, 21) leads to a general

solution for which a simplified recursive solution is

! !
29 122 + 2723
23 = I1T2T3 (4.32)

3 !
2 = Z2+23,

with an associated cost of 6 + 3+ 2 = 11. This is an improvement of two gate-inputs over

(4.31) and a savings of five gate-inputs over the original solution (4.5).

The preceding discussion leads us to an understanding of the primary motivation for
introducing search into our recursive realization algorithm. We have shown that by using

a purely arbitrary ordering of the output selections, we may find ourselves arriving at a
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solution that is far from a global optimum. However, by utilizing an intelligent search
process, we can take advantage of available information to guide us on a path towards a

bet?er solution.

The type of search process that was originally selected for this problem is a branch-
and-bound search. It proceeds towards a solution by continually seeking and expanding
nodes in the search space that represent the least accumulated cost. In other words, once
the node that represents the leust accumulated cost is determined, it is replaced by its
children on an “open” list. At that point, the search tree is re-examined to determine
the next open node with the smallest accumulated cost. This process is repeated until a
complete solution path is obtained. What is interesting about this search process is that
we are actually constructing the solution as we traverse the tree. Each node in our search
tree represents a partial solution to the problem. The solution is found by collecting all of

the nodes traversed along the solution path.

Given the context of our problem, there are other observations that can be made
with respect to the search process. The first node in our search must represent an output
consisting entirely of inputs. Subsequent nodes can represent outputs defined in terms of
inputs and/or previously defined outputs. Excluding the root node, the number of levels
in the search tree will be equivalent to the number of outputs in our system since at each
level, one of the outputs is defined. It is possible that there exist multiple solution paths

with identical cost. In this case, all of these solutions will be produced.

With these concepts in mind, we can best illustrate this search process with an
example. We will use the system specification given by (4.5) and the associated minimal
determining subsets, functions, and costs shown in Table 4.4. The resulting search for the
least-cost solution is shown in Figure 4.5. Each step is described in detail below (each node

has the form {output, cost, MDS}).

The first step is to find an output, expressed entirely in terms of inputs, that has the
least cost. In this case the associated node is (z3,3, (1, 22, ©3)) which defines the output

z3 using the minimal determining subset {z1,22,23)} at a cost of 3. We then find the
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children of this node3. Since this node defines z3, its children consist of nodes that define
z1 or z; and whose minimal determining subsets are composed of some combination of
inputs and/or z3. In this case the children are (2,7, (z1,22,23)) and (22,6, (%1,22,%3)).
We note that their accumulated costs are 3+ 7 = 10 and 3 46 = 9 respectively. Since these
costs are higher than other nodes which are currently unexplored, we will not expand these

children any further at this time.

The next best solution is node (23,6, (21, 23, 23)) which defines the output z; using the
miniruai determining subset {z,, 22,23} at a cost of 6. Once again we find the children of
this node and continue the process as before. We can see how the branch-and-bound search
process always selects the best available “open” node to expand. This process continues
until the searchk patu contains all of the original output arguments; in this example we
continue until the solution path contains the arguments z;, 22 and z3 in any order. The
first solution we arrive at is our best solution. In our example, the solution ¢onsisted of the
combination of nodes (z3, 3, (21,2, 23)), (22,6, (21, Z2,23)) and (21,2, (22,23)). Table 4.4
lists the functions associated with each of ithese minimal determining subsets. Thus our

final solution,

- — !
21 = 23 + 22
— 1] !
23 = %3+ 7122
—_ !
23 = TyT223,

is a system of equations representing a recursive implementation of the original specifica-
tion. The cost of 24 6 + 3 = 11 is a significant improvement over the cost of 16 associated
with an optimal, non-recursive implementation of this system. Its corresponding circuit

representation is shown in Figure 4.6.

As mentioned earlier, the search process does not stop once a solution is found. It will
determine any solution sets that have the same cost as the initial solution. In terms of our
example, it will list all solutions that can be obtained with a cost of 11. In this case there is

one additional such solution, described by the nodes (z3,3, (22, 23, 22)), (22,6, (21,22, 23))

3The children of a given node are not shown unless they are later expanded
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and (z1,2,(22,23)). At this point no more solutions can be found without exceeding the

accumulated cost of 11 so the search terminates.

4.9 Summary

While our example achieved a 31 percent reduction in cost versus the original, non-
recursive representation, cost reductions of 50 to 75 percent using a recursive realization
technique are not uncommon. It is a global optimization approach that holds a great deal
of promise for the future. The primary drawback to this approach is the potential for
an exponential explosion that makes it too computationally intensive to work for large-
scale problems. It is also not necessarily guaranteed to find an optimal, global solution.
However, improvements in Boolean reasoning and search techniques are beginning to make

progress towards solving some of these problems. This is where much of our effort will

concentrate in the remaining chapters.




V. Building a Recursive Circuit Optimization System

5.1 Introduction

At this point it is worthwhile to re-emphasize one of the primary goals of this re-
search effort: to build a recursive optimization system. It should accept a set of Boolean
equations that define the behavior of a multiple-output circuit, and return a set of equa-
tions that satisfies the specification at a reduced cost. Naturally, we are forced to make
several simplifying assumptions to keep this effort within realistic limits. This chapter will
provide further information on the scope of the development. It will discuss a variety of
design details such as the programming language to be used, the structure and flow of
our prototype-system, how the system fits into the overall optimization scheme, and the

various problems that will be addressed.

5.2 Selection of a Programming Language

One of the early decisions was the selection of an appropriate programming language
from which we could develop our prototype system. Our selection was Scheme, a small

yet powerful dialect of Lisp. Our choice of Scheme was based on a varietyof considerations:

1. Scheme facilitates rapid prototyping.
2. Circuits can be easily represented.in a list-based form.

3. An extensive library of Boolean reasoning tools has already been developed in Scheme

along with a simple global design system.

4. Scheme is available for use on a personal computer (PC).

Without actually working with Scheme, it is difficult to.appreciate its power as a pro-
totyping language. It is a language without much structure; there is no distinction between
data and functions. One can quickly and easily go from a set of desired behavioral charac-
teristics to a working module. There is no need, as in a classical programming language,
for a main program that controls all the subroutines. Each subroutine (algorithm).is ca-

pable of running independently, which enables one to test each module as it is developed.
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Scheme also facilitates the abil{ty to make frequent modifications to a system .ithout
creating unforeseen problems. As long as we are consistent with the inputs and outputs
of a given module, we can cl:ange its internal composition without affecting other parts
of the program. This becomes extremely important when we are continually modifying
modules in our system to improve their performance. Often, prototype systems developed
in Scheme will eventually be translated into a more conventional language such as “C” to
improve their speed and take advan.age of more sophisticated graphics and input-output
capabilities. However, this genzrally occurs only after the concept that is being explored

has been thoroughly developed in Scheme and is well tested -and understood.

The fact that Scheme is a list-b~sed language, and that circuits can easily be described
in a list-based form, makes Scheme an obvious choice for this development. To illustrate
this concept let us consider an example. The normal-form specification for an Exclusive-
OR gate with inputs z; and x; and output 2y is f(z1,22,21) = 1 where f is given by the
formula

NN / ! !
Z1T2% + 212221 + T1%52) + 21222 .

This formula can easily be rzpresented in tha list-based form
(((x1) (%2) (Z1)) ((X1) X2 21) (XL (X2) 21) (X1 X2 (21))) ,

where the complement of a literal is enclosed in parentheses (e.g., (X1)). The OR-operators

are not shown but are inferred to exist between terms, as illustrated below:
(term + term + term + ... + term) .,

Scheme is designed to handle these list-based representations in an efficient manner and it

is-quite easy to develop functions and procedures that manipulate these lists.

A library of tools has been developed in Scheme specifically to facilitate the ma-
nipulation of Boolean functions. This collection of tools is called BORIS, which stands
for BOolean Reasoning In Scheme. It was initially developed by Brown (22) to aid his
work with Boolean equations and the concepts behind Boolean reasoning. It includes

functions that perform complementation, absorption. Boolean multiplication and division,
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elimination, and countless other tasks. It has procedures that enable one tofind the Blake
canonical form of a Boolean function or perform a variety of other simplification tasks. It
includes a parser that accepts a system of equations and transiates it into a list-based form
that Scheme can understand. P RIS also includes a simple global design system based
on some of the-concepts discussed ir. Chapter 4. This wealth of tools zvailable in Scheme,
coupled with the fact that Scheme is available in a PC version, led us to the selection of

SCHEME as our language for this project.

5.3 Modeling a General Circuit Optimization System

Before we begin discussing the details of our design, it is worthwhile to take a step
back and adopt a more general view as to what our requirements are. We would ide:ly like
to build a global, multi-level design system capable of accepting a behavioral specification of
a multiple-output system and producing a technology-specific implementation. We would
like this implementation to be an optimal or near-optimal solution. One possible approach
to such a system-is shown in Figure 5.1. We begin by taking a behavioral-specification and
transforming it into a system of Boolean equations. From this system of équations, our
multi-level optimizer produces a least-cost, 1aulti-level representation. This logic structure
is generic in the sense that we have not adapted it to any porticular technology. That is
our next step. Unfortunately once we map our system into a target technology it is often
no longer in an optimal form. Consequently, further optimization must take place. This
optimization-step may be accomplished using a local redesign technique involving the use
of an expert system. The final level in our transformation process is the standard cell; here
transistor-level circuits, required to implement a particular logic function, are specified.
It should be pointed out that although the process descril.ed in Figure 5.1 consists of six
distinct steps, our recursive design system addresses only two-of them, the two enclosed
by a dashed line. This involves taking a system of equations and performing a recursive

optimization-on them. While all six steps are important, the other four are beyond the

scope of this research effort.
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5.4 Developing A Recursive Circuit Optimization System

The process involved in the recursive realization of combinational logic circuits was
discussed in detail in Chapter 4. Here we intend to discuss how that process can be
incorporated into an automated optimization system. We can begin by decomposing the
process into sinaller modules, each of which perform a specific function. The resulting data
flow diagram is shown in Figure 5.2. We begin with a system of equations that describes
the desired behavior of a circuit. Each ~quation is parsed into a list-based form that can be
manipulated by Scheme. Using the principles of Boolean reduction, the system of equations
is reduced to a single Boolean equation in normal form. We then must ensure that this
equation represents a tabular specification. If not, we can convert it to a tabular form that
still satisfies the original specification. Once we are sure-that our specification is tabular,
we perform a dependency analysis on it. This dependency analysis calculates the minimal
determining subsets for each specified output. Next, a cost and associated function are
found for each of the minimal determining subsets. Finally, using the minimal determining
subsets, costs, and functions, a branch-and-bound search is performed to determine a least-
cost solution. By “least-cost” we mean a least-cost solution in terms of the search space
we have defined using the minimal determining subsets and their associated costs. The
final output is a system of equations that represents a least-cost, recursive realization of

the original specification.

5.5 Modification of the BORIS Multi-Level Design System

At the point this research effort was undertaken, all of the steps shown in Figure 5.2
were implemented and operating in Scheme except a module that determines whether or
not a given specification is tabular. However, it is imporiant to note that the design
system was initially built as a “proof of concept” with little emphasis given to-its ultimate
speed. This became readily apparent when the design system took unreasonably long
times to arrive at solutions from simple specifications involving no more than four or five
variables. However, since it has been shown that an automated recursive real‘zation system
is achievable and can significantly reduce the cost of a circuit, we can-concentra‘e our efforts

on improving the speed and efficiency of every aspect of this system. The success or failure
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of this system hinges on whether or not it can produce adequately optimized circuits in a

reasonable amount of time.

Our modified BORIS design system is-divided into the separate functional modules
shown in Figure 5.3. Each of these modules represents a Scheme file that contains a
collection of functions and procedures designed with a specific goal in mind. The Design
Controller is the main program. It calls all the appropriate functions and passes them the
appropriate information. It is responsible for the flow and control of the whole process
including the format of the output. The Parse Module actually has a dual function; it
parses-a system of equations into a list-based form and then reduces the equations to a
single equation in normal form. The Tabular Module determines whether or not a given
specification is tabular. If it is not, it converts it to a tabular form. The MDS Module
finds the minimal determining subset for a given output. The Cost Module finds the cost
and associated function for each of the minimal determining subsets. The Search Module
uses the information gathered concerning each minimal determining subset to find a least-

cost solution. The Data Module is where all pre-defined specifications are located. The
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user has the option of adding a desired specifications to this file or simply inputting the
specifications as the optimization procedures are used. All of these modules make use of

specific functions and procedures defined in the BORIS Design Tools file.

5.6 Summary

The goal of this chapter was to provide an overview of the thought that went into
the design and development of our global, recursive optimization system. We discussed
the reasons for the selection of Scheme as a programming language. We introduced the
functions of a general optimization system and pointed out those functions that are de-
veloped in this research effort. We addressed the development of an automated, recursive
circuit optimization system and illustrated the flow of data through it. We introduced the
BORIS design system and identified its various existing and proposed featur.s. With all

of this in mind, we can now focus our attention on the specific problems at hand and the

design approaches aimed at solving them.




VI. Detailed Problem Analysis and Design

6.1 Introduction

A recursive optimization system was successfully implemented in Scheme as part of
the BORIS toolset. It was not.our intent to discuss the thought and detail that went into
the design of the original system. Instead, the primary goal of our research has been to
analyze this system, seeking ways to improve its speed and efficiency while at the same
time evaluating its effectiveness. We proceeded by carefully studying the performance
of the BORIS design system and identifying specific areas where improvements could be
made. Once problem areas were identified, we designed, developed and implemented spe-
cific techniques aimed at solving them. It is important to point out that the problem
analysis and design tasks were accomplished simultaneously with the testing. It was ulti-
mately the results of periodic testing that identified specific problem areas and drove the
design process. Most of the problems were handled through the modification of existing
algorithms, but some involved the introduction of new techniques. Not all of the modifica-
tions resulted in dramatic improvements to the design system. This is-not a major concern
of ours since it is just as important to rule out those techniques that do not improve the

system’s performance as it is to identify those that do.

6.2 Performance of the BORIS Optimization System

To effectively enhance the system’s performance, it is imperative that we know all
we can about its current operation. For this reason a series of preliminary tests were
conducted on the BORIS optimization system. For this testing, the system was divided

into three-distinct parts:

1. Parsing and reduction of-a system of Boolean equations.
2. Calculation of the minimal determining subsets and their associated costs.

3. Searching for an optimal or near-optimal solution.

Using a variety of sample circuits the resulting run-times, for each of these categories, were

recorded in Table 7.1. While we can not draw too many conclusions from such a small
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sampling of circuits, it was obvious that the time spent calculating the minimal determining
subsets and parsing the Boolean equations far outweighed any time spent searching for a
least-cost solution. The average relative proportions of the runtimes, for each circuit,
are shown on the pie chart in Figure 7.1. These findings contributed significantly to the
direction this research would take. It would have been fruitless, for example, to concentrate
all our efforts on improving the speed of the search process when it currently constitutes
only a small percentage of the total run-time. Therefore, our intent was to distribute
our efforts amongst a variety of key objectives, with each objective addressing a specific

deficiéncy in the system.

6.3 Integrating a Tabular Design Module

In Section 4.4.2 we justified the need for a tabular design-filter. We found it was
necessary that a given specification be tabular in order for the design system to function
properly. The question becomes how to handle non-tabular specifications. To address this
problem, a Tabular Module was developed in Scheme with two specific goals in mind. The
first goal was to design a filter that could be used to determine whether or not a given
specification is tabular. If the specification was found to be non-tabular, then our second
goal was to convert the-specification to a tabular form. A non-tabular specification may
have multiple tabular forms; we need to select only one of the tabular representations to

pass on to the optimization system.

The code for the Tabular Module, which was developed in Scheme, can be found in
Appendix B. It should be emphasized that this module was developed to work indepen-
dently or in conjunction with our design system. When working with the design system, we
already have available a specification that has been reduced to normal form. In addition,
at this point we are not interested in displaying the result, but instead simply returning it.
For these reasons, the slightly moaified calling procedures TABULAR-SPEC? and MAKE-
TABULAR-SPEC were introduced; the first procedure checks to see if a specification is

tabular and the second procedure converts a non-tabular specification into a tabular form.
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6.3.1 Tabular Design Filter. The first challenge we faced was building a tabular
design filter. It should accept as its input an equation (or set of equations) and a list of
specified outputs (arguments). It should return a “true” response if the system described
by the equation(s) is tabular with respect to its inputs or return a “false” response if the
system is non-tabular. In Scheme, « “true” response is indicated by #T while a “false”
response is indicated by (). Also, we need tc assume that the inputs consist of all of the

arguments in the system that are not specified as outputs.

The algorithm we developed uses a recursive process to generate all of the discriminants!.
By definition, if any of the discriminants evaluates to something other than zero or a term
on the designated output variables, then the specification is non-tabular and the algorithm
returns ’ (). Otherwise, if all of the discriminants evaluate to either zero or a term on the

output variables, then the specification is tabular and the algorithm returns #T.

The tabular design filter is called in Scheme using the format
(TABULAR? EQUATIONS ARGS)

where EQUATIONS represents a Boolean equation (or set of Boolean equations) and ARGS

represents the desired outputs. This operation is illustrated in the example shown below:

[1] (tabular? *("f = x> +y 2"
ug = x y) + Z
"h x' +y o+ z") ' (f g h) )

#T

When used in conjunction with the Design Module, the format used to call this-algorithm

is
(TABULAR-SPEC? SPEC ARGS)

where SPEC represents a previously parsed specification in normal form and ARGS represents

the desired outputs.

1Discriminant is_defined in Section 2.2.4
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6.3.2 Non-Tabular to Tabular Conversion Algorithm. We need to build an
algorithm that is capable of converting a non-tabular specification into a tabular form.
It should accept as its input a specification consisting of one or more Boolean equations
and a list of proposed outputs. By knowing the specified outputs we should be able to
determine the corresponding inputs. With this information, we have the data necessary to
calculate the corresponding discriminants. As the discriminants are generated, they should
be filtered to ensure that each discriminant consists of either a zero or a single term. In the
case that more than one term exists for a given discriminant, we need to ensure that this
multi-term SOP formula cannot be represented by an equivalent single term. If it cannot,

then the first term is arbitrarily selected and the rest are eliminated.

The procedure described above was implemented in Scheme and can be called using

the following format:
(MAKE-TABULAR EQUATIONS ARGS)

where EQUATIONS represents a Boolean equation (or set of Boolean equations) and ARGS

represents *Yie desired outputs. This operation is illustrated in the example shown below:

[1] (make-tabular ’("q’ j+qk’=8q  t+qr’ t’"
"O=rs+rt+st")

(rst))
How Do You Want to Display Your Result?

Raw List Form
Horizontal SOP Form
Vertical SOP Form
Reduced Form

B W N =

What Choice Do You Want To Select? 4

1= JK'R’S’T? + J'Q’S’T’ + JK'R'S T’ + J QRS T
K Q R’S’T + K’Q R’T?

0O




When used in conjunction with the design module, the algorithm is called using the format
(MAKE-TABULAR-SPEC SPEC ARGS)

where SPEC represents a previously parsed specification in normal form and ARGS represents

the desired outputs.

6.4 Improving the Efficiency of our System

The efficiency of our system refers to its maximal utilization of existing knowledge
to achieve the desived results in the quickest time possible. Our strategy for improving the

efficiency of the global optimization system was to

o Understand the purpose and operation of each of the fundamental modules,
¢ Seek ways to improve the efficiency by enhancing existing design techniques,
o Seek ways to improve the efficiency by introducing new design techniques, and

o Improve the overall system efficiency by modifying some of the basic Boolean tools

used by the design system.

6.4.1 The Parse Module. The Parse Module can be found in Appendix B. It is

called in Scheme using the format
(PARSE SYSTEM)

where SYSTEM represents a Boolean equation (or set of Boolean equations). The resulting

output is a single, list-based Boolean equation in the form F = 0. An example of this

process is shown below:




(1] (parse ’("f = x’ + y 2"
g = x y' + z'"
"hex'+y +2'M))

(G (2)) (6 {H)) C((Y) (H)) ((X) (H)) ((Z) (H))
((F) (X)) ((F) () ((F) (@) ((G) (Y) X) ((G) H X)
((X) 62) (YG2Z) (F(2)X) (FHEX) (F(Y) X) (FGX)
(FGz) ((F)ZY) (ZYHX)

Preliminary tests indicated that the parse module consumes a substantial amount of
the overall design time. This justified a more detailed examination of the parsing system.
One seemingly interesting question is why do we parse the system into the form F = 0 and
then take the complement? In other words, why not just parse the system directly into the
preferred normal form F = 1 that the design system requires. It appears on the surface
that we may be able to achieve a speedup by doing this. The answer becomes apparent

when we look at the system reduction process.

To reduce a system of equations into a single equation of the form F = 0 requires
only that we take the sum (OR) of all the individual equations once they are reduced to
the form F = 0. This was shown earlier in Section 2.3.2. Since the resulting equation
remains in an SOP form, no further manipulation is necessary. Efficient complementation
routines can take this SOP formula and quickly convert it to the desired normal form. On
the-other hand, to reduce a system of equations directly to the form F = 1 would require
that we take the product (AND) of all the individual equations, once they are reduced to
the form F = 1, as was shown in Section 2.3.2. In this case the resulting single equation
is not in a convenient SOP form. To convert it to a SOP form requires a time-intensive
Boolean multiplication procedure. It turns out that this multiplication consumes more
time than a complementation would. Therefore, we conclude that the method of reducing
a system of equations to the form F’ = 0 and then taking the complement is currently the

most efficient technique.

Before we examine other approaches aimed at improving the parser, it is worthwhile
to understand, in general, its current operation. It was developed using a formal approach.

This-approach consists of the following basic steps:
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1. The string representation of each Boolean formula is converted into equivalent tok-

enized form.
2. The tokenized list is then transformed into a prefix AND-OR-NOT representation.

3. The AND-OR-NOT representation is then converted to an equivalent list-based SOP

form.

4. Steps 1 through 3 are repeated for each Boolean formula in a system, with the

resulting list-based SOP formulas being-added together.

5. The final result isthen reduced to an equivalent sub-minimal form?.

A careful analysis of this system revealed two modifications that could likely im-
prove the overall efficiency. One modification would involve the complete redesign of the
parser system. While the formal structure of the original parser adds to its generality and
flexibility, it-accomplishes this at the expense of the parser’s efficiency. If we completely
redesigned the parser specifically for the requirements of our particular global design sys-
tem, a moderate speedup would likely be achieved. This might involve eliminating one or
more of the steps above: it might pessibly entail going directly from a string-based form to
a list-based SOP form. This seemed like the obvious choice until preliminary-tests showed

us that as much as 90 percent of the parsing time was spent on Step 5.

What makes this observation even more interesting is the fact that after spending a
significant amount of computational time reducing our system to-a sub-minimal form, we
then take its complement. It may not be intuitively obvious, but if a-sub-minimal formula
is-complemented, the result is no longer in a minimal form. We therefore have sacrificed all
the time spent reducing this forn :la and subsequently are forced to-minimize the formula
once again. It should be noted that the parser was not developed with circuit optimization

in mind. It may indeed function very well for a variety of other applications.

To overcome this problem, Step 5 was-simply removed from the process when per-
forming a circuit optimization. The formula is then simplified only after the complemen-

tation takes place. Since most of the computational time involved in parsing a system

2A sub-minimal form is a Blake canonical form with redundant terms removed in any order.
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of equations was tied up in Step 5, significant improvements in speed were realized. The
only potential drawback is that the formula to be complemented is more complex. Early
indications showed us that the small increase in complementation time was far outweighed

by a drastic reduction in time spent reducing the system to a sub-minimal form.

6.4.2 The Minimal Determining Subset Module. A copy of the MDS Mod-
ule can be found in Appendix B. It contains a collection of algorithms aimed at calculating
minimal determining subsets for use in our optimization system. It is called in Scheme

using the format
(MIN-DETERMINING F Z)

where F represents the parsed specification in normal form and Z represents the output

that the minimal determining subsets describe. An example of this process is described

below:
[1] (min-determining ;; find MDSs
(simplify ;3 reduce formula
(complement ;3 convert to normal form
(parse "f = x* + y 2" ;i parse system
ng = ox Y o+ "
"h = x? ¢ y) 4z ))) ’Z)

(G X) (HX) (XY 2Z))

The result tells us that for this system of equations, the output z can be created
from {G X}, {H X} or {X Y Z}. Naturally 2 could also be constructed from a superset of

any of these sets but not a-subset.

Preliminary tests indicated that the MDS Module was excessively slow, typically
consuming 50-percent and-often up to 90-percent of the total-optimization-time. T: . was
a surprising discovery that led us to believe there may exist better ways to find minimal

determining subsets. With that possibility in mind, improving the speed of the MDS

Module became one of the central topics of this research effort.




Earlier we discussed two basic methods for calculating minimal determining subsets:
the redundancy elimination technique (Secti~n 4.6.1) and the opposing literals technique
(Section 4.6.2). It is ¢ v intent to examine .uese techniques in more detail and propose
possible modifications to our optimization system based on our findings. Our ultimate goal
is to improve the efficiency of this process to such an extent that it no longer consumes a

major portion of the design time.

6.4.2.1 Redundancy Elimination Technique. The redundancy elimina-
tion technique was the method used in the original optimization system. As was described
in Section 4.6.1, the redundancy elimination technique employed a depth-first search pro-
cess that involves the successive-removal of variables. This technique is illustrated in Table
4.2. It proved to be successful in finding the minimal determining subsets, but unfortu-
nately it takes an inordinate amount of time. If one wished to improve the efficiency of
this techr "que, it is likely that one would need to concentrate on improving the efficiency
of its search process. Although this technique might deserve a more detailed analysis, it
was not attempted in this research effort. Instead, a variety of alternative approaches were

investigated.

6.4.2.2 Opposing Literals Technique. The opposing literals technique
was discussed in some detail in Section 4.6.2. Because of its simple step-by-step approach,
this process was quickly prototyped in Scheme. Unfortunately, preliminary tests on this
prototype were not very encouraging. In fact, Scheme consistently ran out of memory, even
when processing rather simple circuits. The problem was traced to Step 4 in described in
Section 4.6.2. In this step, a product-of-sums (POS) formula is multiplied out to produce
an equivalent SOP formula. As this multiplication is carried out, the number of terms
increases at an exponential rate. It does not take too many multiplications before the
number of terms exceeds Scheme’s internal men ory. Fortunately, there are some ways to
get around this problem. It is in portant to note that most of the terms that are generated

are redundant and hence can be eliminated without any effect on our resulting formula. It

was this observation that led to the development of the following approach.




Multiplication and Absorption Process: To eliminate any redundant
terms, we will nse a Boolean property called absorption®. An algorithm that performs
absorption has already been develcped and can be found in the BORIS Design Tools
Module shown in Appendix B. The next problem becomes how to integrate absorption
into our multiplication process. We can not wait until the entire multiplication process is
complete because Scheme will run out of memory long before that happens. Therefore, we
will implement a process that repetitively performs multiplications and absorptions until
the entire formula is transformed into a SOP form. To illustrate this idea, let us use an

example. To transform-the POS formula

(s+e)(b+e)b+d+s)atc) (6.1)

into an-equivalent SOP form, proceed in the following fashion:

(s+¢c)(b+¢) select multiplicands
(bs+ cs+be+c) multiplication
(bs+¢) absorption
(bs+c)(b+ d+-s) select muliplicands
(bs + bds + bs + be + cd + cs) multiplication

(b + bd + cs) absorption

(b+bd+ cs)(a+c) select multiplicands

(ab + abd 4 acs + be + bed + bes) multiplication
(ab 4+ be + acs) absorption .

Using thi process, we arrived at the correct solution. It is important to note that the
largest number of terms that we deal with, using this process, is six. This compares to 24

terms that the.normal multiplication process would encounter.

This multiplication and absorption process was integrated into the opposing literals
algorithm. Preliminary tests were quite encouraging. They showed a significant speedup

using this method of calculating minimal determining subsets versus the original redun-

3The absorption property is shown in (2.19) and (2.20).
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dancy elimination technique. This en ouraged us-to take a closer look at this method and
search for an even more efficient means of transforming a POS formula into an equivalent

SOP form. One new approach involved the use of a Boolean Expansion Process.

Boolean Expansion Process: The idea here is to break a long POS formula
down into simpler components which can be handled much easier by Scheme. This is
accomplished using a technique called Boolean Expansion which was-introduced in Section
2.1.5. Using this technique, we simply expand the POS formula until no further expansion
can take place, at which time the resulting formula is in a POS form. By using this
technique, we avoid having to use multiplication at all. We perform absorption only once,

after the formula has been reduced to SOP form.

An algorithm that performs this Boolean expansion process was designed and im-
plemented in Scheme. It is important to note that we designed this algorithm around the
special features of our opposing literals process. The POS formula that is generated does
not contain any literals in a complemented form. With this in mind, the expansion process

can be described as follows.

The variable z, with respect to which we expand, is arbitrarily chosen as the first
variable in the formula. Let R be the product of all the factors of f involving z, with = set

to 0. Let S be the product of all the factors of f not involving 2. An expansion for f is
f=zS+RS. (6.2)

It turns out that 2.5 and RS are generally much simpler than the original formula. However,
the process does not stop here. Instead, Boolean expansion is applied to S and RS. This

process continues in a recursive fashion until no further-expansions-can take place. This

entire process was built into a recursive Scheme procedure that can be found'in Appendix

B.




To illustrate one step in this expansion procedure, let us use the same example we

did earlier (6.1). Using the definitions for z, R and S described above, we derive

R = (c)(b+4d)
S = (b+c)at+e).

Substituting these values into equation (6.2) produces the expansion

f=(6)+c)at ) +[()(b+d)(b+e)(ate)]. (6-3)

‘We note that the POS formulas on either side of the + are simpler than the original POS
formula. Expansion would then proceed with each of these POS formulas. This recursive
expansion process continues until f is expressed as a SOP. At that point, absorption is

carried out to remove all redundant terms.

Preliminary tests once again were very encouraging. They showed that this expansion
technique provides significant improvements over the multiplication/absorption process.

Despite this success, we decided to carry this process one step further.

Expansion Process With Intelligent Selection: The selection of an
expansion-variable is currently an arbitrary process. We simply choose the first variable
to appear in the formula. This choice is seldom the best one. We discovered that if the
variable that appeared most often in an expression were chosen first, the expansion process
would proceed faster towards a solution. Once again using the same example shown in

(6.1), we can define z, R and S as follows:

T = ¢ ‘
R = sha
S = (bt+d+s)
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The value of z was chosen to be ¢ because ¢ appears the most often in our expression, a

total of three times. Substituting these values into equation (6.2) we have:

[ =abes+ (abs)(b+d+ s) (6.4)

It is easy to see that equation (6.4) is much simpler than equation (6.3) and closer to
a solution in SOP form. This illustrates how an intelligent selection of the expansion-
variable, can lead us to a quicker solution by reducing the number of expansion steps.
However, this is not the only benefit. It also reduces the number of terms that appear in
the result before absorption takes place. Since the fewer the terms in an expression, the

faster the absorption algorithm can run, we gain an additional speedup.
6.4.3 The Search Module

6.4.3.1 Background. Search plays a critical role in our circuit optimization
process. Not only does it affect the speed at which we arrive at a solution, but it also.may
affect the quality of the solution itself. Unfortunately, to attain an optimal solution we
often have to sacrifice the efficiency of our process and conversely to attain an efficient
process we. often sacrifice the optimality of our solution. Building a practical optimization

system almost always.involves a-compromise between efficiency and optimality.

The number of distinct solutions that will satisfy a given specification is infinite.
Searching for optimal solutions in an infinite state space is neither efficient nor practical.
Consequently, our first task is to reduce this infinite search space to a practical size.
Fortunately we have already done this. Recall that the purpose for introducing minimal
determining subsets was to reduce the possible combinations of variables that could be
used to define each output. In addition, we ensure that for any combination of variables,

a unique circuit representation-exists.

While the use of minimal determining subsets substantially reduces the search-space,
in some circumstances it may also prevent us from obtaining an-optimal solution. Unfortu-
nately, that.is the price we have to pay for the improved performance of our system. Now

that we have effectively reduced the search space, we need to-identify the most effective
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search algorithm to use.

6.4.3.2 Selecting A Search Process. Search processes are generally di-
vided into two-categories: informed search and uninformed search. With an uninformed
search process, the way the state space is searched is determined by the search method
and not the information available at each state. Some common examples include depth
first search and breadth first search. On the other hand, informed search uses available
information to guide the search through the state space. It is often preferred because, by
utilizing available information, one can make an intelligent decision as to where to go next.
This often leads one to a quicker and sometimes better solution. Some common examples
include hill-climbing, branch-and-bound search and A* Since we have information avail-
able that could be used to-guide our search, we need to select an informed search process

that best suits-our needs.

Hill-climbing proceeds in a depth-first fashion, utilizing the local knowledge sur-
rounding a given state (node). T¢s main drawback is that it may arrive at a solution that
is a local optimum and fail to recognize a better global solution. Without exhaustively
proceeding through the entire search space, we have no way of knowing whether or not
a given solution is the optimal one. We will therefore consider an alternative approach,

using a branch-and-bound search.

Branch-and-bound search maintains a list of partial paths containing the accurnulated
costs from the start node to the current open nodes. The open node that is selected for
evaluation, is always the one with the smallest accumulated cost. Once a node is selected,
its children are evaluated and placed on the “open list.” The next node to be selected
may be one of‘the children of the current node or a previously evaluated node; whichever
represents the least accumulated cost. This search process continues until a solution is
obtained. The solution is guaranteed to be a least-cost solution in terms of the costs we
have established. However, this may or may not represent a global optimum (i.e. a better

global solution may exist outside of our search space).

The branch-and-bound search technique is the method that we chose for our opti-

mization system. It is an effective heuristic search-process that proceeds rapidly towards a




least-cost solution. For those familiar with the available search techniques you may wonder
why we do not use A* search, which is often guaranteed to return an optimal solution.
The reason is that A* search not only relies on information accumulated along the search
paths, but aiso relies on an estimate of the cost remaining to reach a global optimum.
Currently, there does not exist any quantifiable means of determining how close we are to

an optimal solution. Without such a means, an A* search is not possible.

6.4.3.3 A Branch-and-Bound Search. The search space that we will ex-
plore can be visualized as a tree of nodes. The information contained at each node includes
the output it defines, an associated minimal determining subset, an associated two-level
representation and an associated cost. The evaluation function keeps track of the accumu-
lated costs as we proceed down a path towards a solution. The search begins at the root
node, with each successive node defining one of the outputs. Special care is taken to ensure
that any given output along a path-tsdefined only in terms of the inputs or other outputs
previously defined along the same path. This constraint further reduces the possible search
space. Beginning with the root node, each successive node that is explored represents a
best possible choice in terms of its accumulated cost; the smaller the accumulated cost
the better. Once all of the outputs have been defined, the nodes along this solution path
contain all the information necessary to describe our least-cost solution. It may be the

case that more than one least-cost solution exists.

6.4.3.4 A Scheme Implementation. The preceding search process was
implemented in Scheme and included as part of the original optimization system. The
documented source code can be found in Appendix B. It is worthwhile to point out some

of the unique features of this search algorithm. It is called in Scheme using the format:
(SOLVE QUEUE MDS OUTPUTS MAXCOST)

QUEUE maintains a list of partial paths through the state-space. Each partial path has
associated with it an accumulated cost. After every step in the search process, these paths
aresorted such that the path with the current minimal cost appears first in the queue. MDS

maintains a list of the original minimal determining subsets and their associated output,
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cost and two-level circuit representation. OUTPUTS maintains a list of the desired outputs
identified in the original specification. It turns out that a solution path is achieved if
each of the nodes in that path contains one of the outputs specified in OUTPUTS. Finally,

MAXCOST is a built-in safety factor that will terminate the search process if the cost exceeds

a specified value.

To illustrate this search process consider a circuit specification defined by

[1) (define ckti '("f = x* + y 2"
g = xy o+ 2
"h = x’ + y) + z)ll) )

CKT1

We convert this specification to the desired normal standard form using the call procedure

[2] (define parse-ckti (simplify (complement (parse ckti))))

PARSE-CKT1

We then find the minimal determining subsets and their associated output, cost and two-

level representation using the following procedure:

[3] (define mds (out-arg-lists parse-ckti ’(f g h)))
Minimal Determining Subsets:

F ((GX) (HX) (XY 2))

G ((FZ) (HX2) (XY2))

B ((FX) (GX) (XY2Z)

MDs




If we take a look at MDS we see that it contains the necessary information:

[4] mds

((F 2 (((G)) ((X))) ¢X) (F2 (((H)) (X)) HX)

(F 4 (((X)) (YZ2))XYZ) (G2 (((Z)) ((F))) F 2)
(G4 (((2)) XW)HXZ) (G4 (((2)) X MNXYZ
(H2 (((F)) (X)) FX) (H2 (X)) (@) GX)

(B 3 (((2)) (X)) ((Y))) XY2Z)

Finally, if we pass the MDS information to SOLVE, we can observe the action of the search

process and the resulting solution.

[5] (solve *((0 ())) mds ’(f g h) 1000)

(0)

(3 (H3XYZ)

(4 (GaxyYa2z))

(4 (F4axyz)

(5 (F2HX) (H3XYZ2))
(6 (G4XY2Z) (H2GX)
(6 (F2GX) (G4XYZ)
(6 (F4XYZ) (H2FX)
(6 (F4XYZ) (G2F 2))
(T(F4XYZ) (H3XYZ)
(T(G4HXZ) (H3XYZ)
(T(G4XYZ) H3XYZ)

(7T (F2HX) (G2F2) (H3XY2)
F=H4+X
G =2+F
He=2+X'+Y

DONE

The solution represents a recursive realization of the original specification. The total
accumulated cost of 7 means that this circuit can be implemented with a minimum of 7

gate inputs. This compares with 11 gate inputs for the original, two-level specification.
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6.4.3.5 Improving the Search Process. With a better vnderstanding of
the search process, we seek a way to improve its efficiency. While a variety of possibilities
exist, we will concentrate on only one of these methods. It involves the calculation of cost

for each of the minimal determining subsets.

Our concern here is not how the costs are calculated but rather when they are
calculated. In our original system, the costs were calculated prior to the start of the search
process. A careful examination of this search process reveals an important feature: it is
not uncommon to arrive at a solution before all of the nodes in the search-space have
been examined. If a particular node is not examined, it is useless and time-consuming to

calculate its cost.

We propose that it may be more efficient to calculate the costs of each node as it
is examined. There is one problem with this approach: a node may appear more than
once in a given search-space. It is very important that we don’t calculate the cost for
a given node more than once. To overcome this problem, we utilized a procedure called
MEMOIZE described in (94). When a node is evaluated, Scheme checks a table. If the cost
associated with the given node has already been calculated, Scheme retrieves the necessary
information. If it has not been calculated, then the cost procedure is called and the
necessary information is produced and stored. The original search algorithm was modified
for the purpose of evaluating this approach. The resulting code and documentation can

be found in Appendix B.

6.4.4 The BORIS Design Tools Module. An obvious way to improve the
efficiency of our global optimization system is to improve the efficiency of some of the
fundamental procedures it uses. These procedures are located in the BORIS Design Tools
file shown in Appendix B. Examples include Boolean addition, mu'tiplication, division,
complementation, absorption, elimination, reduction, simplification and numerous other
procedures. Since our system makes extensive use of these procedures at various stages
throughout the optimization process, any speedup that can be achieved with these proce-

dures will be a speedup of the optimization system as-a whole. A great deal of progress

has been achieved in this area by Army Cap*ain James Kainec at the Air Force Institute




of Technology. A decision was made not to introduce any of these improved algorithms
in our optimization system. It was felt that this would blur the distinction as to which
modified processes were responsible for improving the efficiency. Once our results are well
documented, these upgraded procedures will be incorporated into the BORIS Optimization

System and will likely improve overall efficiency even further.

6.5 Finding an Optimal Solution

So far, most of the emphasis of our research and development has focused on im-
proving the speed of our global optimization system. We would like to divert our focus
slightly and address the problem of obtaining an optimal solution. While our technique of
using minimal determining subsets to reduce the search space is effective, there are cases
when a solution that represents a global optimum is eliminated by this process. With this
in mind, we investigated ways to modify our existing system so that it would discover an

optimal solution.

To-uncover an optimal solution we need to find a way to expand the search space. One
idea that was tested involved extending the list of minimal determining subsets to include
some output-augmented subsets. These were minimal determining subsets that contained
an additional output, other than the one that the MDS describes. Unfortunately, by
expanding the search space we are likely to reduce the efficiency of our search. However,
we would ultimately like the user to be able to decide whether or not the additional search

time is worth the possibility of finding a better solution.
An-auxiliary procedure that performs the preceding expansion process was developed
in Scheme. It has the form

(MDS-EXPAND MDS Z OUTPUTS)

where MDS is a list of minimal determining subsets for a given output Z and a OUTPUTS is
a list of the specified outputs. It returns an expanded list including the original minimal
determining subsets along with the new modified ones. To illustrate how it functions, an

example is shown below:
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[1] (mds-expand ’((X1 X2 X3) (X2 X3 21)) *Z3 ’' (21 Z2 Z3))

((X1 X2 X3 Z21) (X1 X2 X3 22) (X1 X2 X3) (X2 X3 21 22)
(X2 X3 21))

By incorporating this process into the procedure that calculates the minimal determining
subsets, we can effectively modify the optimization process. This new process is guaranteed
to have a better chance at finding an optimal solution by virtue of its expanded search
space. However, the decision on whether or not to use it depends on the speed at which

we desire a result.

6.6 Summary

In this chapter we have scratched the surface of the myriad possibilities that exist for
improving our global optimization system. We have-analyzed the performance of various
parts of the system and recommended viable solutions. In many cases these recommenda-
tions were researched, designed and then implemented in Scheme. It was not our intent
in this chapter for all of the intricate workings of the design system to be discussed in
detail; the complete listing of the source code is included in Appendix B and-the software

is available for those that are interested. The results of our efforts and the subsequent

testing are summarized in the following-chapter.




VII. Summary of Results

7.1 Introduction

The various modifications and upgrades to the global optimization system were thor-
oughly tested to verify both their efficiency and effectiveness. The computer that was used
for this testing was an IBM-AT compatible with an 80286 microprocessor. To accomplish
this task, a variety of sample circuit specifications were placed into a single file! and loaded
into the BORIS optimization system. Each specification contains a p -rticular combination
of inputs, outputs, terms and operators, with some of the specificaticns known to be non-
tabular. The specifications were carefully chosen to test our system under a wide range of

conditions.
In this chapter we wili highlight the results of this testing. Some of the key topics
that will be addressed include:
¢ a typical optimization session,

o the performance of the tabular design module,

improvements to the optimization system efficiency,

the results of optimization, and

other noteworthy observations.

A more detailed accounting of the results of each test can be found in Appendix A along

with a brief description.

7.2 A Typical Optimization Session

We begin by loading Scheme. A special batch file that is recognized by Scheme
(SCHEME.INI) will automatically load the necessary optimization files when Scheme is
called. SCHEME.INI must be located in the sime directcry as the Scheme code in order
for this to work properly. We begin the loading process by calling Scheme at the DOS
prompt.

YThe file is data.s and is'shown in Appendix B




C: pcs

This initiates the loading of Scheme and subsequently all of the necessary optimization

files. It will appear as follows:

PC Scheme 3.03 07 June 88
(C) Copyright 1988 by Texas Instruments
All Rights Reserved

TABULAR loaded

PARSE 1loaded

MDS loaded

CcosT loaded

SEARCH 1loaded

TGOLS  loaded

DATA loaded

DESIGN 1loaded

[PCS-DEBUG-MODE is OFF]
1]

Once the system has been loaded and the Scheme prompt [1] appears, the optimiza-

tion process can begin. The optimization of a specific circuit is initiated as follows
(DESIGN CIRCUIT OUTPUTS)

where CIRCUIT represents a circuit specification and UUTPUTS represents the designated
outputs of the circuit. To-illustrate the use of this system, we will run an example. An
attempt will be made to optimize CKT22 whose outputs are F, G and H. The results are

shown below:

2Defined in the data.s file shown in Appendix B
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[1] ckt2
("f = x* + y z" ng =xy + 2! Mh o= x? 4+ y! + z'")

[2] (design ckt2 '(f g h))
* Parsing Equations and Reducing to Normal Form
* Checking To See If Specification Is Tabular: PASSED!

Function:
FIGHX Y
F'GHX 2
F G'H X’2
FGHX'2
FGHXYZ

Minimal Determining Subsets:
F ((GX) (HX) (XY2Z)

G ((F2) (BX2) (XYZ2))

H ((FX) (6X) (XY2)

()]

(3 (H3XYZ)

(4 (G4XY2Z)

(4 (Faxyz))

(5 (F2HX) (H3XY2Z)
(6 (G4XY2Z) (H2GX)
(6 (F2GX) (6G4XYZ))
(6 (F4XYZ) (H2FX)
(6 (F4XYZ)(G2F2Z)
(7T(F4XY2Z)(H3XYZ))
(7T(G4HXZ) (H3XY2Z)
(7(G4XY2Z2)(H3XY2Z))

(T(F2HX) (G2F 2Z) (H3XY2Z)

F=H+X

G=F'+ 2

H=Y+ X4+ 2
DONE

We see that this recursive optimization process begins by parsing the system of
equations into one equation in normal form. This equation is checked to see if it is tabular.

In this example it passed the test. The terms of the resulting equation are then displayed
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in a vertical fashion. Next, the minimal determining subsets for each output are displayed.
The information concerning the cost for each minimal determining set has already been
calculated at this point. Finally the branch-and-bound search process begins and proceeds
until a solution is obtained. The final solution is a recursive realization of the original

specification with a cost that has been reduced from 11 to 7.

7.3 The Performance of the Tabular Design Module

The tabular verification and design module functioned as expected throughout the
testing process. It successfully identified all of the circuit specifications known to be non-
tabular and passed all of those that were not. It was an efficient process that never
consumed more than one to two percent of the total design time. When a non-tabular
specification was encountered, it transformed the specification into an acceptable tabular
form. Two examples of optimizing a non-tabular specification (nontabl and nontab2) can

be found in Appendix A.

7.4 Improvements to the Optimization System Efficiency

7.4.1 Preliminary Testing. Prior to undertaking any new modifications, the
original BORIS optimization system was thoroughly analyzed. Its performance was divided
into-the three distinct parts mentioned in Section 6.2: parsing and reduction of a system
of Boolean equations, calculating the minimal determining subsets and searching for the

best solution.

1. Parsing and reduction of a system of Boolean equations.
2. Calculation of the minimal determining subsets and their associated costs.

3. Searching for an optimal or near-optimal solution.

Using a variety of sample specifications, the total run-times of each of these parts was mea-
sured. The results have been compiled and can be found in Table 7.1. While this sampling
represents only a fraction of the possible types of specifications that may be encountered,

it is large enough to draw some general conclusions. It is obvious that as the number of
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Name ‘ Inputs/ | Parse l MDS | Search | Total

Outputs | (sec) | (sec) | (sec) (sec)
cktl 2/2 1.25 1.34 0.64 3.23
ckt2 3/3 4.70 9.42 190 | 16.02
ckt3 3/3 7.83| 12.12 1.01 | 20.96
cktd 4/4 11.14 | 65.24 442 | 80.80
ckt5 5/5 | 90.15| 808.15 | 20.99 | 919.29
wsu-ckt 4/3 10.97 | 20.46 2.07 | 33.50
example 4/3 24.82 | 22.44 3.12 | 50.38
sample 3/3 28.14 | 17.05 3.36 | 48.55

ex-951 3/3 6.84 | 11.96 251 ( 21.31
bedto3 4/4 78.53 | 104.13 | 25.27 | 207.87

Table 7.1. Efficiency of Original BORIS Optimization System

Figure 7.1. The Original Run-Time Distribution
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Original | Updated | Run-Time
Name Parse Parse | Reduction
(sec) (sec) (%)
cktl 1.25 0.50 60
ckt2 470 1,90 60
ckt3 - 7.83 3.12 60
ckt4 11.14 443 60
cktd 90.15 10.29 89
wsu-ckt 10.97 5.12 53
example 24.82 3.37 86
sample 28.14 14.30 51
ex-951 6.84 2.34 34
bedtod 78.53 8271 89
_ Average Improvement - 64

Table 7.2. Speed of Original Parser versus Updated Parser

inputs and outputs increases, the run-times increase correspondingly, at what appears to
be an exponential rate. This emphasizes the system’s inherent problems with computa-
tional complexity. Another important observation is the relative proportion of run-time
spent by each part of the system. To illustrate this, the pie chart shown in Figure 7.1 was
constructed. It represents the amount of run-time spent on each part of the optimization
system when averaged out over all of the test runs shown in Table 7.1. It shows us that the
bulk of the processing time was consumed in calculating the minimal determining subsets
and associated costs (57%). This-was followed by the parsing system (34%) and finally the
search process (9%). As we mentioned in Chapter 6, these results contributed significantly
to the direction our research would take. Our primary emphasis was placed on improving

the algorithms associated: with parsing and finding minimal determining subsets.

7.4.2 The Modified Parsing System. The interesting discovery concerining
the parser is that the parser itself is rather efficient. It is the process of trying to reduce
the parsed equation to its simplest form that consumes a majority of the time. The only
modification that was made was to postpone any simplification attempts until after the
complement was taken. After the equation was in normal form, we applied the algorithm
SIMPLIFY which quickly reduces the equation to an adequately minimized, though not

necessarily optimal, form. The results of this upgrade are illustrated in Table 7.2. This
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Name | MDS1 | MDS2 | MDS3 | MDS4
(sec) | (sec) | (sec) | (sec)
cktl 1.34 0.73 0.65 0.58
ckt2 9.42 9.06 8.79 4.75
ckt3 12.12 8.28 7.76 5.66
ckt4 76.73 | 36.26 | 33.23{ 25.18
cktb 808.15 | 589.13 | 513.27 | 121.79
wsu-ckt | 20.46 | 13.41 | 13.01 | 10.29
example | 22.44 | 1586 | 1448 | 14.31
sample | 17.05| 14.03 | 12.73 | 11.89
ex-951 11.96 5.91 5.54 5.06
bedto3 | 104.13 | 56.64 | 44.44 | 44.27

Table 7.3. A Comparison of MDS Algorithm Run-Times

data indicates an average 64 percent reduction in the run-time of the parser system. This

translates into a significant improvement in the speed of the optimizationsystem in general.

7.4.3 Comparing the MDS Algorithms. Our goal was to find the most effi-
cient technique for calculating minimal determining subsets. A variety of approaches were
investigated, with four of them actually prototyped in Scheme. All of these techniques
produced identical results; however, their run-timnes varied quite dramatica | four
algorithms were tested on the sample specifications and the results were ¢ _ - 1 Ta-
ble 7.3. The first approach (MDS1) uses the Redundancy Elimination Techni, ‘iiat was
part of the original design system. The second approach (MDS2) uses the Opposing Liter-
als Technique with a multiplication/absorption process. The third approach (MDS3) uses
the Opposing Literals Technique with a expansion process. The fourth and final approach
(MDS4) uses the Opposing Literals Technique with an expansion process that includes

intelligent selection.

It is obvious from the results that the fourth approach (MDS4) is by far the fastest.
On the average, it was able to-calculate the minimal determining subsets over twice as fast
and in some cases up to six times as fast as the original-approach (MDS1). The speedup
using MDS4 seemed become more pronounced as the number of inputs and outputs in
the specifications increased. This is a very encouraging feature of this approach. These

results led to the integration of the MDS4 module into the final version of our optimization




system. Ce

7.4.4 Evaluating the Modified Search Algorithm. The search algorithm was
modified such that the cost of each node in the search tree was calculated only when it
was examined. If the solution was found before a given node was examined, the cost for
that node would never have to be calculated. This modified search algorithm was analyzed
using our set of sample specifications. The resulting analysis indicated that no significant
speedup was achieved. There were a few examples that were optimized slightly faster
using this approach, but for most them the time was about the same or a little slower.
To understand the reasons for these results we need to understand a little more about the

process itself.

The process does introduce some additional overhead. Every time a node is examined,
we have to check a table to see if the cost has béen previously calculated. If it has not, then
we need to calculate the cost at that point. To calculate the cost for a given output, we
need to know the range of that output. The ranges for each of the outputs are calculated
at the beginning and stored in a table. Thus every time a cost is calculated, the proper

range needs to be selected from the table. This also introduces additional overhead.

Another reason the results are not what we might expect is that, given the relatively
small size of our sample specifications, almost all of the nodes were examined any way
before a solution was obtained. Thus, in these examples, the advantages of calculating the
costs later was overridden by the additional overhead that was introduced. It is only when
the circuit specifications contain a large number of inputs and outputs that this technique
has a chance at improving the speed and efficiency of the process. For a large specification,
many cost calculations may be avoided and the overhead would be amortized over a larger

search space.

7.4.8 Summary of Efficiency Upgrades. The improved parsing and MDS al-
gorithms have significantly enhanced the overall performance of the circuit optimization
systemn. Table 7.4 compares the total run-times of o=~ original optimization system with

our upgraded one. As you can see, using the upgraded system resulted.in a significant im-
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Name | Original | Upgraded | Run-Time
System System | Reduction
(sec) (sec) (%)
cktl 3.23 | 2.00 38
ckt2 16.02 9.51 41
ckt3 20.96 10.84 48
ckt4 80.80 34.02 58
ckt5 919.29 157.23 83
wsu-ckt 33.50 17.94 46
example 50.38 22.40 56
sample 48.55 31.67 35
ex-951 21.31 11.85 44
bcdto3 207.87 85.19 59
Average Improvement - 51 |

Table 7.4. Speed of Original System versus Upgraded System

provement in the run-time for every sample specification tested. This reduction averaged

about 51 percent with up to an 83 percent reduction in the case of the ckt5 specification.

7.5 The Results of Optimization

While our focus has been on improving the speed and efficiency of the BORIS op-
timization system, it is worthwhile to point out the cost reductions that this system was
able to achieve. The gate-input costs of the specified circuit before and after optimization
are shown in Table 7.5. We can see from these results, that 50 percent reductions in the

gate-input cost are quite possible.

7.6 Improving the Optimization Results

An alternative optimization technique that expands the potential search space was
evaluated. The procedure MDS-EXPAND was incorporated into the existing optimization
system. It expands the collection of minimal determining subsets to include some non-
minimal ones. Using this special technique, described in Chapter 6, we hoped to achieve

a solution that is closer to optimal. Using as a test case the specification called “sample”,




Name | Original | Optimized | Reduction
Cost Cost (%)

cktl 4 3 25
ckt2 11 7 36
ckt3 17 10 41
ckt4 11 7 36
cktd 15 13 13
wsu-ckt 21 10 52
example 33 27 18
sample 44 22 50
ex-951 16 11 31
bcdto3 24 21 12

| Average Reduction - 31 |

Table 7.5. Gate-Input Cost Before and After Optimization

the original BORIS design system achieved the result

] ! !
21 = T1T3+ 7125 + 712273
29 = 2123
_— [
2 = 23z + 222 + TT3%

at a cost of 22. By using our modified technique to expand the search space, we were able

to obtain the result

!
21 = 22 +$1$3
! ! !
Z3 = 329%T3 + T1T223 + 217,23
[N
23 = 23+ 29T3%5

at a cost of 21. In addition, eleven other circuits that meet the original specification at
a cost of 21 were uncovered. Unfortunately, the system took over twice as long to arrive
at this solution. Thus we have showed that this technique can effectively uncover better
solutions at the expense of the system’s efficiency. The listing of this trial run can be found

along with the other results in Appendix A.
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7.7 Other Noteworthy Observations

As often happens in research, a careless mistake led to an interesting discovery.
While testing the BORIS optimization system, a parsed specification in the form F' = 1
was accidentally passed on to the system instead of a specification in the form F = 1. In

other words, the specification fed to the system was the obverse of what it should be. This

led to the following interesting resuits:

¢ The minimal determining subsets were identical to what they should be.

o The formula describing each output in the solution was simply the complement of

what it should be.

¢ The search involved less than half the number of steps and took less than half the

time.

Subsequent testing found that designing with the obverse specification (specification
of the form F’ = 1) can result in a search that is either longer or sho:ter than the original.
The reason that the search changes when designing with the obverse specification is that
the costs assigned to each minimal determining subset are different. This discovery opens
the door to a variety of new possibilities which could be aimed at improving the efficiency
of the search process. We could use a parallel-system to concurrently optimize the original
specification and the obverse specification; the optimization process would terminate with

whichever process completed first, The results of this testing are listed in Appendix A.

7.8 Summary

We have investigated just a few of numerous possible upgrades to the BORIS op-
timization system. These upgrades have resulted in dramatic improvements in efficiency.
Because we have been successful in reducing the time consumed in parsing the specifi-
cation and calculating the minimal determining subsets, a larger percentage of the total
run-time is now consumed by the search process. This is illustrated in the pie chart shown
in Figure 7.2. Since the search process now consumes a significant portion of the overall

run-time, future efforts can concentrate on improving it.
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Figure 7.2. The Run-Time Distribution For Our Upgraded System

While significant improvements have been made to the optimization process, practical
circuit specifications with 20 to 30 or more inputs/outputs are still beyond our system’s
capacity. The system does have an inherent problem with complexity. Consequently it
takes an inordinate amount of time to optimize large specifications. Scheme typically runs
out of internal memory or stack space long before a solution is obtained. Despite these
problems, the system can effectively handle circuits that are larger than ever before. It
definately is a viable approach to circuit optimization that holds a great deal of promise

for the future.
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VIHI. Conclusions and Recommendations

8.1 Summary

A great deal of emphasis in this research effort was placed on establishing a foun-
dation of knowledge on the topic of logic optimization techniques and principles. A brief
historical perspective on the development of optimization systems was presented along
with an analysis of the current, state-of-the-art techniques. Given this background, we
were able to identify the basic problem with current optimization systems: their inability
to efficiently achieve near-optimal, multi-level solutions. This typically results from their
failure to take advantage of don’t-care conditions and redundancies that exist in a <ir-
cuit specification. Global approaches aimed at solving these problems have been around
for a long time. However most of these approaches incorporate algebraic techniques that
produce faster, though scldom optimal solutions. A better approach is the use of Boolean
reasoning techniques. However, this approach has:been largely ignored because of its innate

complexity and a lack of understanding that such algorithms exist.

New technologies and requirements are forcing designers to pack more and more logic
onto smaller chips. Consequently, global optimization systems are beginning-to receive con-
siderable attention. Some multi-level optimization systems are beginning to incorporate
some Boolean reasoning techniques along with their algebraic ones. Better techniques,
coupled with faster computers, have begun to make global optimization a profitable ven-
ture. However, a significant amount of work still needs to be done to make current global
techniques moré efficient and effective. The need for better optimizations systems will be-
come increasingly important as the application-specific integrated circuit market (ASIC)

continues to grow (18).

The recursive optimization system presented in this thesis was developed to inves-
tigate a new approach to global optimization. It is a relatively simple system that over-
comes some of the complexity and inefficiencies that are associated with Boolean-based
approaches. To take advantage of redundancies and don’t-care conditions, the equations
that specify the circuit were reduced to a single equation. A dependency analysis on the

variables was performed to reduce the potential search space and improve the system ef-
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ficiency. A branch-and-bound search was then used to find an optimal solution in the
search space, based on the given costs. For specifications with up to 10 variables, the
recursive optimization system was effectiv ‘n finding a near-optimal solution. However,
the efficiency of the system still lagged behind expectations and consequently became one

of the main focal points of this research effort.

8.2 Specific Accomplishments

8.2.1 The System Efficiency Was Improved. When the recursive optimiza-
tion system was analyzed, it was found that the bulk of the run-time was consumed parsing
the equations and calculating the minimal determining subsets. Subsequent modifications
to these processes achieved significant improvements. The run-time consumed by the pars-
ing process was reduced, on the average, by 64 percent. This was achieved by modifying
the way the parser simplified an expression and at what point it was simplified. By mod-
ifying the process that calculates the minimal determining subsets to an opposed literals
approach, the resulting run-times were reduced by an average of 54 percent. This new
approach incorporated an expansion process that intelligently selected the variable to ex-
pand on. The integration of these upgraded modules into the original optimization system

resulted in run-times that were reduced by up to 83 percent.

8.2.2 A Tabular Design Filter Was Constructed. A tabular design filter was
successfully integrated into the system. It provided an effective means of ensuring that
non-tabular specificatic.us are not passed on to the optimization system. Those non-tabular
specifications that were encountered were transformed into acceptable tabular forms. The
tabular module gives the designer some freedom to describe a system’s desired character-
istics in the most general terms. It eliminates the need for one to ensure that the system

he describes is tabular and can be represented by a truth table.

8.2.3 Further Optimization Was Achieved. The recursive optimization sys-
tem consistantly achieved significant cost reductions when compared to a non-recursive,
two-level implemen.ation. Despite this, an attempt was made to improve the original op-

timizatic . system even further. It involved expanding the search space by introducing
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output-augmented subsets. Although the process of injecting additional outputs into the
minimal determining subsets was rather primitive, it achieved the desired results. In one
example, the gate-input cost of an optimized sample circuit was reduced from 22 to 2..
Because of the reduced efficiency of this process, it was not integrated into the upgraded
optimization system. It does, however, show that techniques do exist that can improve the

effectiveness of the recursive optimization process by expanding the search space.

8.3 Recommendations

As a result of this research effort a number of interesting questions-were raised. Some

ideas that may warrent further investigation include the following:

Improved Search Techniques Search plays an extremely important role
in the recursive optimization process. The current search technique could be improved
through the usé of “open” and “closed” lists instead of the current queue-based approach.
In addition, alternative search techniques should be explored. This research could even
evaluate the use of non-deterministic search processes such as the use of genetic algorithms
(47). Genetic algorithms are an adaptive search process that has achieved noteworthy

success when applied some difficult, combinatorial, NP-complete problems.

Calculating MDS Cost Currently the costs of minimal determining subsets
are calculated by finding their optimal two-level representation and then counting the gate-
inputs. This is a very time-consuming process. Alternative approaches may make use the

size of the minimal determining subsets themselves, or incorporate other factors.

Designing With The Obverse Specification We discovered that a system
could be designed using the obverse specification instead of the specification itself. Fur-
ther research could explore ways to utilize this finding to improve the efficiency of the

optimization process.

Improve Tabular Design Filter Currently, when a non-tabular specification
is encountered, it is transformed into an arbitrary tabular form. Most non-tabular spec-
ifications can be decomposed into a collection of tabular specifications,-each sufficient to

describe the desired behavioral characteristics of the original system. One could investigate
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heuristics for selecting, from this collection of tabular specifications, the one that would

result in a relatively good solution.

Removing Assumptions By removing some of our original assumptions, one
could investigate a variety of factors; these factors might include controlling the allow-
able time-delay introduced by the optimization process, handling sequential circuits and

controlling fan-in limitations.

Optimize For A Target Technology The recursive optimization process
represents only a portion of a complete design procedure. It begins with a specification that
is represented by a system of Boolean equations in SOP form. It produces an optimized
system of equations that are also in SOP form. Today, very few circuits are actually
implemented in AND-OR logic. Consequently, our result must be transformed into the
applicable target technology. Unfortunately this transformation usually results in a system
that is no longer optimal. Isthere some:way, using global techniques, tooptimize a system
of equations directly into a target technology? This would be an interesting research

project.

Develop-A VHDL To Scheme Parser This would provide an effective front-end
to the recursive optimization system and facilitaté tests using realistic specifications. It
should bc capable of accepting a specification defined in VHDL and transforming it into a

system of list-based Boolean equationsthat can be interpreted by Scheme.

Improve User Interface BORIS is more than just a recursive optimization
system; it is a library of Boolean reasoning tools. It includes everything from comple-
mentation, absorption, elimination and Boolean arithmetic procedures to algorithms that
find the Blake canonical form or perform a variety of other simplification tasks. With the
proper user interface, it could become a valuable learning or design tool for anyone working

with Boolean algebra or involved in digital design.

8.4 Conclusion

More important than any of the improvements we achieved was the knowledge that

we gained. One of the primary objectives of our effort was to lay-the groundwork for contin-




ued research in this area. The results that were obtained using this recursive optimization
approach should stimulate some interest. Even though this system is currently not capa-
ble of handling specifications with a large number of variables, this does not present an
insurmountable obstacle. Nothing we have seen seems to indicate that further, even more
dramatic, improvements in speed and efficiency cannot be obtained. No claim is made
that this approach is the answer to all optimization problems. It is, however, a step in the

right direction. It is a viable technique for the optimization-of digital circuits.




Appendix A. Selected Listings of Results

A.1 Recursive Optimization of CKT1

The specification defined by cktl is a simple two-input, two-ouput system. The

results of optimization are listed below:

[2] ckti

(llf = a) + b)ll llg = 3 bll)

[3] (design ckti ’(f g))

* Parsing Specification and Reducing to Normal Form
* Checking To See If Specification Is Tabular: PASSED!
Function:

B'F G*

AF @

A BF'G
>Hinima1 Determining Subsets:

F ((G) (AB))

G ((F) (A B))

0

(2 (F24B))

(2 (G 2 4 B))

(3 (F16) (G 2AB))

(3(F24B) (G1F))
DONE




A.2 Recursive Optimization of CKT2

The specification defined by CKT2 is a simple three-input, three-output system. The

results of optimization are listed below:

(4] ckt2
(llf =x’ +yztlg=xy +2" th=x +y 4 z'")
[5] (design ckt2 ’(f g h))

* Parsing Specification and Reducing to Normal Form
* Checking To See If Specification Is Tabular: PASSED!

Function:
F G'H X’z
FGHXYZ
F'GHX Y’
F°’GH X 2?
FGHX'2

Minimal Determining Subsets:
F ((GX) (HX) (XY 2))

G ((Fz) (HX2Z) (XY 2))
H ((FX) (GX) (XY2Z))

(0)

(3M3XYZ)

(4 (G4XYZ)

(4 (F4XY2Z)

(5 (F2HX)Y (H3XY2Z)

6 (G4XYZ) (H26X)

(6 (F2GX) (G4XY2Z)

(6 (F4XYZ (H2F X))

6(F4XYZ (G2F 2))

(7T (FaxYZz) (H3XYZ)

(T(G4HXZ) (H3XYZ)
X

(7(G4XYZ) (H3XY2Z)

(T(F2HX) (G2FZ) (H3XY2)

F = H+ X
G=2'+F
H= 2+ X'+ Y

DONE




A.3 Recursive Optimization of CKT3

The specification defined by CKT3 is a another three-input, thtee-output system.

The results of optimization are listed below:

[6] ckt3

("z1 = ab’+a b+bc"z2=a2a b’ +abd"z3=0p +c")
[7] (design ckt3 ’(zi z2 z3))

*x Parsing Specification and Reducing to Normal Form

*x Checking To See If Specification Is Tabular: PASSED!

Function:

A'B C 21 22°23°
ABCZ1 2223
ABC'Z1°Z2 Z3
A’B?21°Z2 Z3
A'B C°Z1 Z2°Z3
A B’Z1 22°23

Minimal Determining Subsets:

Z1 ((z2z3) (ABC) (AB 23) (AC 22) (BC 22))
22 ((A B) (A 21 23))

Z3 ((BC) (A Cz2))

(0)

(2 (23 2 B C))

(6 (Z2 6 A B))

(8 (22 6 A B) (232BC))

(9 (217 ABZ3) (23 2BC))
(9 (21 9 A BC))

(10 (Z1 4 B C 22) (Z2 6 A B))
(10 (21 4 A C 22) (Z2 6 A B))

(10 (21 2 Z2 23) (Z2 6 A B) (Z3-2 B C))

Z1 = 23+ 22
22 = A B + A’B’
23 = C’+ B




A.4 Recursive Optimization of CKT4

The specification defined by CKT4 is a four-input, four-output system. The results

of optimization are listed below:

[8] ckt4

("w=ap+q""x=ap"y=p+a r""z=q")

[9] (design ckt4 (v x y 2))

* Parsing Specification and Reducing to Normal Form

* Checking To See If Specification Is Tabular: PASSED!

Function:

P)Q)R’"’X)Y,z’
APQWXY'Z
AP QW XY 2
A'Q°R WX'Y 20
P’Q R’W X'Y?’Z
APQWXYZ
A’'P QW XYZ
AMQRWX'YZ
APQWXYZ2
APQWXYZ

Minimal Determining Subsets:

Wox) X2) (AP (APZ) (AQY) (AY 2))
X ((AP) (AY))

Y ((APR))
yA

Q)
0)
(11
(2 X24AP)
(3 ((X24P) (Z1Q»
(4 (Y4 APR)
(4 (W4 APQ)
4 (M2QX) (X24P))
(5 (Y4APR) (Z1Q)
(5 MW4aAPQ (Z1Q)
(5 (WaAPZ) (Z1Q)
(5 W2X2Z) (X2AP) (21Q)
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(5 W2QX) (X24AP) (21
(6 (X2AP) (Y4APR)
(6 (W4 APQ) (X2A4AP)
(6 X2AY) (Y4APR))
(T (X2AP) (Y4APR) (Z
(7T W4aAP2Z) (X2AP) (2
(T (WaAPQ) (X2A4AP) (Z
(7T X2AY)(Y4APR) (2
(8 (W2QX) (X24P) (Y4
(8(W4AQY) (Y4 APR))
(8 (W4 APQ) (Y4 APR))
B8 W2QX) (X24Y) (Y4
(9 W2QX) (X24P) (Y4

W=0Q+X

X=AP

Y=P + AR

Z=0Q

(9 W2X2Z) (X2AP) (Y4
(9 (W2X2) (X2AY) (Y4
(9 (W2QX) (X24Y) (Y4
DONE

D)

A

A

)
)
)
Q)
P R))

P R))

PR) (Z1Q)

PR) (Z10Q)
PR) (Z1Q)
PR) (Z1Q)




A.5 Recursive Optimization of CK'T5

The specification defined by CKT5 is a five-input, five-output system. With ten
variables, this circuit thoroughly exercises our program. The results of this optimization

are shown below:

{10] ckts

("v=q r+t'"w=ap+q""x=ap""y=p+a r""z=q")
[11] (design cktbs (v w x y 2))

x Parsing Specification and Reducing to Normal Form

* Checking To See If Specification Is Tabular: PASSED!

TFunction:
P’Q’R,T’V,W’X,Y’Z’
P’Q°R’T V WX'Y?2?
APQTVWXYZ?
APQRVWX'YZ
A'P’Q’R V WX°Y 2
AP QPRT'VW XY 2
AQR TV WXY 2
AP Q’T.V wxy z?
P’Q R’T'V’W X?Y?2
APQ T'V'W XY’2
P'QR'TVWXYZ
APQTVWXYZ
AP Q T'V'W XY 2
A’QR T'V'W X°Y 2
ANPQTVWXYZ
A’'QRTVWXYZ
APQRTVWIYZ
APQRTVWIXY Z?
APQRVWXY 2!
APQTVHXYZ
APQTVWIXYZ




Minimal Determining Subsets:

V (QRT) RT Z))

W QX)) (X2 (APQ (AP2Z) (AQY) (AY2Z))
X ((AP) (A Y))

Y ((APR))

Z (@)

(0)

(1 (21Q)

(2 (X24AP)

B (X24P) (Z1Q)

(4 (Y4 APR))

(4 (V4QRT)H

(4 W4 APQ)

(4 (W20 X) X24P)

(5 (Y4APR) (Z10Q))

(6 (V4QRT (Z1Q)

(5 (V4RT2Z) (Z1Q)

(6 WaaAaPQ (z1Q)

(5 (W4 APZ) (Z14Q))

(5 W2X2Z) (X2AP) (Z1Q)
(5MW20X) (X24P) (Z1Q))

(6 X24P) (Y4APR))

(6 (W4APQ (X24AP))

(6 (VA4QRT) (X2APR))

(6 (X2AY) (Y4 APR))

(7 (X2AP) (Y4APR) (Z1Q))

(7 W4APZ)(X24AP) (21Q)

(7 W4 APQ (X24AP) (Z1Q)

(T (V4QRT) X2AP) (Z1Q)

(T (V4ARTZ) (X2AP)(Z210Q))

(T (X2AY) (Y4APR) (Z21Q))

B (W4QRT) (W2QX) (X2AP)

(8 (W20Q0X) (X2AP)(Y4APR))
(8(W4a4AQY) (Y4 APR))

(8(W4APQ (Y4APR))

(88 (VAQRT) (Y4 APR)

(8(V4QRT) (W4 APQ))

(8 W20X (X2AY)(Y4APRY

(O WAa4QRT (W2QX) (X2AP) (Z1Q)
(9 (V4RTZ) (W2QX) (X2AP) (Z1Q)
(O (W2QX) (X2AP) (Y4APR) (Z14Q)
(9 (V4QRT (W2X2) (X2A4P) (Z14Q)
(O (W4a4RTZ) W2X2Z) (X2AP) (Z10Q)»
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(9
(9
(9
(9
(9
(9
(9
(9
(9
(9
(9
€]
€]
(10
(10
(10
(10
(10
(10
(10
(11
(11
(11
(11
(11
(11
(11
(11
(11
(11
(11
(11
(11
(11
(11
(11
(12
(12
(12

W2X2)
(V4RTZ2)
(V4RTZ2)
WaAYZ)
Waaraqy
(W4 AP2Z)
(W4 APQ
(V4RT2)
(V4QRT
(V4QRT
(V4QRT
W2X2) X
W20X) X
(V4QRT
(WaAPQ
(W4aAQY)
(V4QRT)
(W4QRT
(W4 APQ
W4aaAQY)
(V4RT2Z)
(V4QRT
(WVaQRT
(V4RT2)
(W4 APQ

(W4 AP 2Z)

W4aQY)
(WaAY 2)
(V4RT2)
(V4QRT
W4aAaY2Z)
(WaaQY)

(W4 AP 2Z)

(W4 APQ
(V4QRT
(VART2)
(V4QRT
(V4QRT
(V4QRT

(12 V4QRT

2AP) (Y4APR) (Z21Q)
WaaPQ (Z1Q)
W4 AP2Z) (Z1Q)
(Y4APR) (Z1Q))
(Y4 APR) (Z1Q))
(Y4 APR) (Z1Q)
(Y4APR) (Z1Q))
(Y4APR) (Z14Q)
(Y4 APR) (Z10Q)
WaAPQ) (Z1Q)
(W4 AP2Z) (Z1Q0
2AY) (Y4APR) (Z1Q))
2AY)(Y4APR) (Z1Q)
(X24Y) (Y4APR))

(X2AY) (Y4APR))

(X2AY) (Y4 APR))

WaaAPQ) (X2AP))

(X2AP) (Y4 APR))

(X2AP) (Y4APR))

(X2AP) (Y4APR))

W4 APZ) (X2AP) (Z1Q))
(WaAPZ)(X2AP)«(Z21Q)
(X2AP) (Y4APR) (Z1Q)
(X2AP)(Y4APR) (21Q)
(X2AP)(Y4APR) (Z1Q)
(X2AP)(Y4APR) (Z14Q))
(X2AP) (Y4APR) (Z1@Q)
(X2AP) (Y4APR) (Z1Q)
WaAPQ) (X2AP)(Z1Q)
(WaAPQ (X2AP) (Z1Q)
(X2AY)(Y4APR) (Z1Q)
(X2AY) (Y&APR) (Z1Q)
(X2AY) (Y4APR) (Z1Q)
(X2AY)(Y4APR) (Z1Q)
X2AY)(Y4APR) (Z1Q)
(X2AY) (Y4APR) (Z1Q)

W20X) (X2AP) (Y4 APR))
W4 AQY) (Y4APR))
(W4 APQ) (Y4APR))
W20X) (X2AY) (Y&4APR)




(13
v
W

>

-<

N

(13
(13
(13
(13
(13
(13
(13
DONE

(V4QRT
=T+QR
=Q+x

AP

P + A’R

Q

(VART2Z)
(V4QRT
(V4RT2Z2)
(VART2Z)
(V4QRT
(V4RT2Z2)
(V4QRT

W2QX)

W2QX
(W2X2)
W2X2)
(W2X2)
(W2X2)
(W2QX
W2qXx

(X24AP)

(X24AP)

(X 2 AP)

(X2 AP)
(X2A4AY)
(X24Y)
(X24Y)
(X24Y)

(Y4APR)

(Y4 APR)
(Y4APR)
(Y4 APR)
(Y4APR)
(Y4APR)
(Y4APR)
(Y4 APR)
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(z

(2
(z
(¢4
(z
(z

A

(Z

1 Q)

1Q)
1Q)
1 Q)
1Q)
1Q)
1Q)
1 Q)




A.6 Recursive Optimization of WSU-CKT

The specification defined by WSU-CKT is a three-input, four-output system. WSU-
CKT was one of the examples used in the original optimization system. The results of

optimization are shown below:

[15] wsu-ckt

("zi=ab+ac’+bd +c’d’™"z2=>b"c+a’”cd
1z3 = bp? C")

[16] (design wsu-ckt ’(z1 z2 23))

* Parsing Specification and Reducing to Normal Form
*x Checking To See If Specification Is Tabular: PASSED!

Function:

A’C’D Z1°22°23°
A B 212273’

A CZ1 2273
C'D’Z1 22'23°

B D*Z1 22°Z3’
B’C 21°22 23

AB CD 21°22 Z3°

Minimal Determining Subsets:

Z1 ((AD2Z2) (AD2Z3) (ABCD))
22 ((Cz1) (ABCD) (ACD 23))
23 ((B ¢) (B 22))

0)

(2 (Z3 2 B C))

(7 (Z25 ACD Z3) (23 2B C))
(7 (Z27 ABCD))

(8 (21 6 A D 23) (Z3 2B C))
(9 (Z27 ABCD) (23 2BC))
(9 (227 ABCD) (23 2B 22))

(10 (z1 6 A D 23) (z2 2 C Z21) (232 B C))

Z1 = D’Z3’+ A Z3’
2 = C 721’
Z3 = B'C




A.7 Recursive Optimization of EXAMPLE

The specification defined by EXAMPLE is a three-input, three-output system. It
was used in Example 7.7.1 of (22). It is unique in that the output u is already defined in
terms of s, another-output. Even more interesting is the fact that in the final result, u

depends only on the inputs and d and s depend on u. The optimization of EXAMPLE is

shown below:

[17] example
("d=ab+ac+bc""s=a!b!c'""n=abs’+abd s
[18] (design example ’'(d s u))

* Parsing Specification and Reducing to Normal Form

* Checking To See If Specification Is Tabular: PASSED!

Function:

AB’C’D'S° D
A’B C°D'S W
A B'C’D'S W
A B’°CD S'W
A'B C D 8’0
ABCDS U
A B G’D S'U
A’B’CD’S U

Minimal Determining Subsets:

D ((CU) (ABC) (ABS3) (ACS) (BCS))
S ((ABC) (ABDW)

U ((cD) (ABC) (ABS) (ACS) (BCS))

(0)

(8 (U8 ABC))

(9 (D9 ABC))

(14 (D6 CU) (UBABCH
(15 (D9 ABC) (U6 C D))
(16 (S 16 A B C))

(17 (D9 ABC) (U8 ABC)
(24 (S 16 ABC) (U8 ABC))
(24 (s 16 ABC) (U8B C S))




(24 (S16 ABC) (U8B ACS))
(24 (S16 ABC) (U8 ABS))
(25 (D9 BCS) (S16 ABC))
(25 (D9 ACS) (S16 ABC))
(25 (D9 ABS) (S16 ABC))
(25 (D9 ABC) (S 16 ABC))

(27 (D6 CU) (S13ABDU) (U8 ABOC))
D=C'U+CU’
S=AD'+BD'+BU+ABW
U=ABC'+ A’B’C




A.8 Recursive Optimization of SAMPLE

The specification defined by SAMPLE is a three-input, three-output system. It was
used in example 9.6.3 of (22). It contains a larger number of terms in the specification

than the previous examples. The results of optimization are-shown below:

[19] sample

("z1 = x1? x2 x3 + x1 x2’ x3’ + x1 x2’ x3 + x1 x2 x3'"
"z2 = x1? x2 x3 + xi x2’ x3 + x1 x2 x3"

"z3 = x1’ x2' x3’ + x1’ x2 x3 + xi x2* x3 + x1 x2 x3'")
[20] (design sample ’(z1 22 23))

* Parsing Specification and Reducing to Normal Form
* Checking To See If Specification Is Tabular: PASSED!

Function:

X1°X2?X3°21'22°Z3
X1 X2°X3°'Z1 2223
X12X2 X3°21°22°23?
X1X2'X3 21°22°23°
X1 X2 X3 21°Z2'23°
X1 X2 X3'Z1 22 73
X1°X2 X3 21 72 Z3
X1 X2°X3 21 22 73

Minimal Determining Subsets:

21 ((X1 X2 X3) (X1 X2 z2) (X1 X2 23) (X1 X3 22) (X1 X3 Z3)
(X2 X3 23))

Z2 ((Z1 Z3) (X1 X2 X3) (X1 X2 23) (X1 X3 23) (X2 X3 21)
(X2 X3 23))

Z3 ((X1 X2 X3) (X2 X3 z1))

(0)

(10 (Z1 10 X1 X2 X3))

(12 (22 12 X1 X2 X3))

(16 (21 4 X1 X2 22) (Z2 12 X1 X2 X3))
(16 (21 4 X1 X3 22) (22 12 X1 X2 X3))
(16 (23 16 X1 X2 X3))

(16 (21 10 X1 X2 X3) (22 6 X2 X3 Z1))
(20 (21 10 X1 X2 X3) (23 10 X2 X3 z1))
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(22 (Z1 10 X1 X2 X3) (22 2 21 23) (Z3 10 X2 X3 Z1))
Z1 = X1 X3’+ X1 X2’+ X1°X2 X3

22 = 71 73
Z3

X3 Z1 + X2 21 + X2'X3'Z1°




A.9 Recursive Optimization of EX-951

The specification defined by EX-951 is a three-input, three-output system. It was

used in Example 9.5.1 of-(22). The result-of optimization is shown below:

[21] ex-951

("21
23

x1 + x2' x3’ + x2 x3" Y“z2 = x1? x2 + x1? x3"
x1? x2 x3")

[22] (design ex-951 ’(z1 22 23))
* Parsing Specification and Reducing to Normal Form
* Checking To See If Specification Is Tabular: PASSED!

Function:

X1 21 22°Z3”
X2°X3°21 2223’
X1°X2 X3°Z1°22 23’
X1°X2°X3 21’22 73’
X1°X2 X3 Z1 Z2 Z3

Minimal Determining Subsets:

21 ((22 Z3) (X1 X2 X3) (X2 X3 22))

22 ((21 23) (X1 X2 X3) (X1 X2 21) (X1 X3 Z1))

23 ((Z1 Z2) (X1 X2 X3) (X1 X2 Z1) (X1 X3 Z1) (X2 X3 22))

(0)

(3 (23 3 X1 X2 X3))

(6 (22 6 X1 %2 X3))

(7 (21 7 X1 X2 X3))

(9 (Z2 6 X1 X2 X3) (23 3 X1 X2 X3))
(9 (22 6 X1 X2 X3) (Z3 3 X2 X3 22))
(10 (21 4 X2 X3 22) (Z2 6 X1 X2 X3))
(10 (Z1 7 X1 X2 X3) (Z3 3 Xt X2 X3))
(10 (21 7 X1 X2 X3) (23 3 X1 X3 71))
(10 (Z1 7 X1 X2 X3) (23 3 X1 X2 21))
(11 (Z1 7 X1 X2 X3) (Z2 4 X1 X3 Z1))
(11 (Z1 7 X1 X2 X3) (22 4 X1 X2 21))




(11 (21 2 22 23) (22 6 X1 X2 X3) (Z3 3 X1 X2 X3))

21 = 22'+ Z3
22 = X1°X3 + X1°X2
Z3 = X17X2 X3

(11 (21 2 Z2 Z3) (22 6 X1 X2 X3) (Z3 3 X2 X3 22))
DONE




A.10 Recursive Optimization of BCDTO3

The specification defined by BC™7T03 is a four-input, four-output system. It de-
scribes a BCD to Excess-3 Code convertion system from (73). A, B, C and D represent the

BCD inputs and w, X, y and z represent the Excess-3 outputs. The result of optimization

is shown below:

(23] bcdto3

(Ilw
lly

A+BC+BD""xX=B"C+B’D+BC D"
CD+B>D+BC? D" g =Dt

[24] (design bcdto3 ’(w x y 2z))
* Parsing Specification an. ‘ducing to Normal F~rm
* Checking To See If Specification Is Tabular: PASSED!

Function:

A’B'D WX Y 2
B C’D W X’Y*Z?
BCDWXYZ
ABDWXY 2
A'B°C'D’WX?Y?2
A’B C'D’WX Y Z
A’B’C D°W’X Y°Z
A B’C’D’W X’Y’2
B CDW X'Y’Z

A B'CD’W X YZ
ABCDWIXYZ

Minimal Determiniug Subsets:

W ((ABX) (ABCD) (ABCY) (ABCZ)(ABDY)
(ABYZ) GACDX) (ACXZ)

X ((BCD) (BCY) (BC Z))

Y ((BCD) (BCZ) (CDX) (CX2Z))

« (D) (B CY)

(0)

(1 (Z1D))

(T (W7 ABCD))

(8 (W7 ABCZ) (21D))
(8 (W7 ABCD)(Z1D))
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(10 (Y 10 B C D))
(10 (X 10 B C D))
(11 (Y 10 B C 2) (Z 1 D))
(11 (Y10 BC D) (Z 1 D))
(11 (X10BCZ) (Z1D))
(11 (X 10 BC D) (Z 1 D))
(14 (W4 ABX) (X10B CD))

(15 (W4 ABX) (X10BC2Z) (21D))
(15 (W4 ABX) (X10B CD) (Z1D))
(16 (X 10BCD) (Y6 CDX))

(16 (x 6B CY) (Y10 B CD))

(17 (X6BCY) (Y10B C 2Z) (Z1D))
(17 WT7TABDY) (Y10 B C D))

(17 (W7 ABCY) (Y 10 B C D))

(17 (w7 ABCD) (Y 10 B C D))

(17 (W7 ABCD) (X 10 B C D))

(17 (WTACDX) (X10B CD))

(17 (X 6BCY) (Y10 B CD) (Z 1 D))
(17 X 10BC2Z) (Y6 CX2Z) (Z1D))
(17 (X10BCZ) (Y6 CDX) (Z21D))
(17 (X 10 BCD) (Y6 CX2) (Z1D))
(17 (X 10BCD) (Y6 CDX) (Z1D))
(18 (W7 ACXZ)(X10BCD) (71D))
(18 (W7 ACDX) (X10BCD) (Z21D))
(18 (W7 ABYZ) (Y10BCD) (Z1D))
(18 (W7 ABDY) (Y10B CD) (Z1D))
(18 (W7TABCY) (Y120BCD) (21D))
(18 (W7 ABCD) (Y10BCZ) (21D))
(18 (W7 ABCD) (Y10BC D) (Z1D))
(18 (WTABCD) (X10B C 2Z) (Z1D))
(18 (W7 ABCD) (X10BCD) (z1D))
(18 (W7 ABC2Z) (X10BCD) (Z1D))
(18 (W7 ABC2Z) (X10B C 2Z) (21D))
(18 (W7 ABC2Z)(Y10BCD) (Z1D))
(18 (W7 ABCZ) (Y1I0B C Z) (Z1 D))
(18 (WTABCY) (Y10B C 2) (Z1D))
(18 (W7 ABDY) (Y10BC Z) (Z1D))
(18 (W7 ABYZ) (Y1I0BC Z) (Z1D))
(18 (W7ACDX) (X10BCZ) (Z1D))
(18 (W7 ACXZ)(X10BC2Z)(1D))

(20 (W4 ABX) (X10BCD) (Y6CDX))
(20 (X 10 B C D) (Y 10 B C D))
(20 (Y10BCD) (Z10B CY))
(20 W4 ABX) (X6BCY) (Y10 B C D))




(21 (W4 AB
A+B
B’C +
C'X +
D’

N < > =

(21 (W4 A B
(21 (W4 A B
(21 (W4 AB
(21 (W4 AB
(21 (W4 AB
DONE

X) (X10BCD) (Y6CX2Z)(Z1D))
x:

B'D + B C'D?

c 2z

X) (X10BCD) (Y6 CDX)(z1D))
X) (X10BC2Z) (Y6 CX2Z) (Z1D))
X) (X10BC2Z) (Y6 CDX) (z21D)
X) (X6BCY) (Y10BC 2) (Z1D))
X) (X6BCY) (Y10B CD) (Z1D))




A.11 Optimization of NONTAB1 — a Non-Tabular Spec.

This specification tests our system’s ability to identify a non-tabular specification,
convert it to a tabular form-and complete the optimization process. It uses Example:9.3.1
from (22) that is known to be non-tabular for R, S and T when evaluated in terms of J, K

and Q. The result is shown below:

[4] nontabi

("’ j+qk’=s+qg’ t+qr’ t’'""0=rs+rt+sth
[s] (design nontabl '(r s t))

* Parsing Specification and Reducing to Normal Form

* Checking To See If Specification Is Tabular: FAILED!

* Converting To A Tabular Form.

Function:
J'Q’s'T?
J Q°R’S’T
K'Q R°T?
J K R’S'T
K Q R’S'T

Minimal Determining Subsets:
R (QOQ @TN

s ((KQ) @™

T (UXQ)

(0)

(0 (RO J Q)

(O (ROJQ (SO0KQ))
(0 (S0KDQ)

(O @®0JQ) (SOK Q)
(6 (SOKQ (T6JK




(6 (RO.QT) (SOKQ
R=0
S=0
T=KQ+JQ

(6 (ROQT) (SOKQ
(6 (ROQT) (S0QT
(6 (ROQT) (SOKQ
(6 (ROJQ (80QT
6 (ROQRTY((O0QT

(6 ROJIQ (BOQTD

(6 (R0OJQ) (SOKQ

DONE

(T6

(Ts6
(Te
(Te
(T6
(T 6
(Te
(T6

JK Q)

JK Q)
JK Q)
JK Q)
JK Q)
JK Q)
JK Q)
JK Q)




A.12 Optimization of CKT2 Using Its Obverse Specification

This test runs the obverse specification (F' = 1) of CKT2 through the optimization
system. We can compare this result with the standard optimization results shown earlier.
We note that by designing with the obverse specification of a circuit, the resulting Boolean
formulas are merely the complement of what they should be. One can also observe that
this method involved 6 steps in the search process versus 12 for the original system, a

significant reduction in search time.

[9] ckt2
("f = x* + y 2" ng =xy 4+ 2z h=x 4+ Yy o+ z'")
[11] (comp-design ckt2 ’(f g h))

Function:
G2

G H?
H'Y?

H’X?

F’X’

F'G?

G X*Z
GY?Z
FHX

Minimal Determining Subsets:
F ((GX) (HX) (XY 2Z)

G ((Fz) HX2Z) (XY2Z)
H ((FX) (GX) (XY 2Z)

0)

(3H3XYZ)

(B (F2HX) (H3XYZ)
6 (G6XYZ)

(6 (F6XYZ)
(7T(G4BXZ) (H3XYZ)

(T(F2HX) (G2F 2Z) (H3XY2Z))
F =
,G=
H=

DONE

> om
< N =

A-22




A.13 Optimization of EX-951 Using Its Obverse Specification

This is another example of optimizing a cicuit using its obverse specification. As
before, the number of steps in the search process was reduced. We should point out that
this is not always the case; the number of steps in the search process increased in some

examples.

[12] ex-951
("z1 = x1 + x27 x3’ + x2 x3" "22 = x1’ x2 + x1’ x3" "23 = x1’ x2 x3")
[13] (comp-design ex-951 ’(z1 z2 23))

Function:
22’23
X3°Z3
X2'Z3
X1 Z2
2122}
X1°X3 22°
X1°X2 22°
X2°X3°22
21 22 23?
X2 X3 Z1°

Minimal Determining Subsets:

21 ((22 23) (X1 X2 X3) (X2 X3 Z2))

22 ((21 Z3) (X1 X2 X3) (X1 X2 21) (X1 X3 Z1))

23 ((21 22) (X1 X2 X3) (X1 X2 Z1) (X1 X3 Z1) (X2 X3 Z2))

(0)

(3 (23 3 X1 X2 X3))

(4 (22 4 X1 X2 X3))

(7 (22 4 X1 X2 X3) (23 3 X2 X3 22))
(7 (22 4 X1 X2 X3) (23 3 X1 X2 X3))
(8 (21 8 X1 X2 X3))

(9 (21 2 22 73) (22 4 X1 X2 X3) (23 3 X2 X3 Z2))

21 = 22 73’
22 = X1 + X2'X3’
23 = 727+ X3’+ X2?

(9 (21 2 22 23) (22 4 X1 X2 X3) (Z3 3 X1 X2 X3))
DONE




A.14 Non-MDS Optimization of SAMPLE

This example tests a procedure that modifies the list of minimal determining sub-
sets. By introducing non-minimal subsets into this list we were able to obtain a further
optimization of the SAMPLE circuit, from a cost of 22 to a cost of 21. The results of this

modified optimization process are shown below:

[17] sample

("z1 = x1’ x2 x3 + x1 x27 x3’ + x1 x2’ x3 + x1 x2 x3*"
"z2 = x1? x2 x3 + x1 x2° x3 + x1 x2 x3'"
nz3 = x1’ x2? x3’ + x1? x2 x3 + x1 x2°' x3 + x1 x2 x3’")

[18] (non-mds-design sample ’(z1 z2 2z3))
* Parsing Specification and Reducing to Normal Form
*x Checking To See If Specification is Tabular: PASSED!

Function:

X1?X2°X3221222°23
X1°X2 X3°21222°23’
X1’X27X3 21°22°23’
X1 X2 X3 21'22°23’
X1 X2°'X3°21 22’23’
X1 X2 X3721 22 23
X1°X2 X3 21 22 23
X1 X2°X3 21 22 Z3

Minimal Determining Subsets:
21 ((X1 X2 X3) (X1 X2 z2) (X1 X2 Z3) (X1 X3 Z2) (X1 X3 23)
(X2 X3 23))
Z2  ((21 23) (X1 X2 X3) (X1 X2 Z3) (X1 X3 23) (X2 X3 21) (X2 X3 23))
23 ((X1 X2 X3) (X2 X3 z1))

0

(10- (21 10 X1 X2 X3))

(12 (22 12 X1 X2 X3))

(16 (21 4 X1 X2 X3 22) (22 12 X1 X2 X3))
(16 (21 4 X1 X2 Z2) (22 12 X1 X2 X3))
(16 (21 4 X1 X3 22) (22 12 X1 X2 X3))
(16 (23 16 X1 X2 X3))

(16 (Z1 10 X1 X2 X3) (Z2 6 X2 X3 Z1))
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(16 (21 10 X1 X2 X3) (22 6 X1 X2 X3 21))
(17 (22 12 X1 X2 X3) (Z3 5 X1 X2 X3 22))
(20 (Z1 10 X1 X2 X3) (23 10 X2 X3 Z1))

(20 (21 10 X1 X2 X3) (Z3 10 X1 X2 X3 21))

(21 (21 4 X1 X2 X3 22) (Z2 12 X1 X2 X3) (Z3 5 X2 X3 21 Z22))
Z1 = 22 + X1 X3’
Z2 = X1 X2 X3’+ X1°X2 X3 + Xi X2'X3
23 = Z2 + X2°X3'21°

(21 (Z1 4 X1 X2 X3 Z2) (22 12 X1 X2 X3) (23 5 X1 X2 X3 22))
(21 (21 4 X1 X2 22) (Z2 12 X1 X2 X3) (23 5 X2 X3 21 Z2))
(21 (21 4 X1 X2 22) (22 12 X1 X2 X3) (23 5 X1 X2 X3 22))
(21 (21 4 X1 X3 22) (Z2 12 X1 X2 X3) (Z3 5 X2 X3 21 22))
(21 (Z1 4 X1 X3 22) (22 12 X1 X2 X3) (Z3 5 X1 X2 X3 22))
(21 (21 10 X1 X2 X3) (22 6 X2 X3 21) (Z3 5 X2 X3 21 22))
(21 (21 10 X1 X2 X3) (22 6 X2 X3 Z1) (Z3 5 X1 X2 X3 22))
(21 (Z1 10 X1 X2 X3) (22 6 X1 X2 X3 Z1) (23 5 X2 X3 Z1 Z2))
(21 (21 10 X1 X2 X3) (22 6 X1 X2 X3 Z1) (23 5 X1 X2 X3 22))
(21 (21 4 X1 X3 22 23) (Z2 12 X1 X2 X3) (23 5 X1 X2 X3 Z2))
(21 (21 4 X1 X2 22 23) (Z2 12 X1 X2 X3) (23 5 X1 X2 X3 Z2))




Appendix B. BORIS Recursive Optimization System Software

This appendix contains the fully documented source code for the BORIS Design
(Optimization) System. The system is composed of a variety of procedures found-in eight
distinct files. Two additional files which are available provide slightly modified versions
of the recursive optimization system. FEach file has a header which contains important
information about the file itself and general information about the procedures in that file.

Each procedure is described in detail and often includes examples.

The following is a short description of each of these files:

¢ design.s: Contains the main design procedures for performing a recursive optimiza-
tion of digital circuits.

¢ parse.s: Includes procedures that reduce a given specification-into a more convenient
list-based iorm.

o tabular.s: Its procedures check to see if a given specification is tabular. If it is not,
it converts it to a tabular form.

¢ mds.s Contains & variety of procedures that can be used to find the minimal deter-
mining subsets.

e cost.s Contains a variety of procedures used to determine the cost of a given minimal
determining subset.

o search.s Includes procedures that utilize 2 branch-and-bound search technique to
find the least cost, recursive realization of a given circuit.

¢ data.s Contains-some predefined circuit specifications.
e tools.s A collection of procedures used to process Boolean sum-of-product formulas.

¢ new.dsgn.s Contains procedures that modify when the SOP formulas and associated
costs for a given MDS are calculated.

¢ non-mds.s Contains procedures that create non-minimal determing subsets in ad-
dition to the MDSs.




B.1 DESIGN.S File
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This file contains the main design procedure used to
recursively optimize combinational logic circuits. It
accepts as its inputs a specification consisting of a
system of Boolean equations and a list of specified
outputs. The optimization procedure selectively calls the
appropriate subroutines which:

we we we we
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~ parse the system of Boolean equations,
- ensure the specification is valid,

find the minimal determining subsets for each output,

assign costs to each of these subsets,

- perform a branch-and-bound search for an optimal
solution, and

display the final results.

s we We we WwWe We Ws we Wwe we we wo

)
o We wWe We We We We We WO We We We We we we We We wo
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The optimization algorithm can be altered to:

- select a particular method for calculating minimal
determining subsets,

- select a particular method for determining the cost of
a minimal determining subset,

- provide an -er .anced output of information concerning
the minimal determing subsets and their associated
cost and Finally a routine is

- enables one tc iesign using the complement of
the specification.
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ooooo

pissssisssssssssisiassss PROGRAM DETAILS j35i3s553s553iiii3is5i4s
HH

;3. FILE NAME: DESIGN.S or DESIGN.FSL

H

:; DESCRIPTION: Recursive Circuit Optimization System

HH

;3 AUTHOR: Frank M. Brown with some modifications by
HH Eric J. Knutson

HH

i+ DATE: 1 NOV 90

HH

s AUXILIARY FILES: From the BORIS System Software

H

A TABULAR.S SEARCH.S

HH PARSE.S TOOLS.S

HH MDS.S DATA.S

HH COST.S

HH

;3 GETTING STARTED: To get started, load design.fsl and all
H auxiliary files at the PC Scheme System
i prompt. Fhen follow the instructions

i -and/or exanples provided with each of the
i algorithms found below.

i

SRR R SR SR SRR SRS I R S S S S S S S NN

ooooooooooooooooooooooooooooooooooooooooooo
L )’))DD,)’)9’!’0;’)9’)’))9’ DESIGN ))D,))’D’)))”’)’)9”)”)))

;+ The optimization of a specific circuit is initiated by an
;3 input of the form (DESIGN CIRCUIT OUTPUTS) where CIRCUIT

;: represents the circuit specification and OUTPUTS represents
;3 the designated cicuit outputs. An example is shown below:
"

;3 [1] (design *("f = x’ + y 2"

3 "g=xy’ 4z

e "y = x’ + ynl) s(f g h) )

Ly




(define (design c—-cuit outputs)
(define (design~fcn f outputs)
(newline) (princ "Function:") (newline)
(list-terms £)
(l1et ( (mds (out-mds-lists f outputs)) )
(solve *((0 ())) mds outputs 1000) ))
(newline)
(princ "* Parsing Specification and Reducing to Normal Form")
(newline) (newline)
(let ( (spec (simplify (complement (parse-design circuit)))))
(princ "* Checking To See If Specification Is Tabular: ")
(if (tabular-spec? spec outputs)
(begin
(princ "PASSED!") (newline)
(design-fcn spec outputs) )
(begin
(princ “FAILED!") (newline) (newline)
(princ "* Converting To A Tabular Form.")
(newline)
(design-fcn (make-tabular-spec speC outputs)
outputs) ))))

!)
The function (TABULAR-SPEC? SPEC ARGS) accepts a parsed ¥
;; specification SPEC and a list of specified outputs ARGS. )
;3 It passes this information on to TABULAR-AUX? to determine ;;
;3 whether or not the speéificatiop is tabular. It return= N
i; #T (true) if the system is tabular and *() (false) if the ;;
;, 3ystem is non-tabular. :

.o
L]

o weo we

]
oooooooooooooooooooo . R R R L R R R R e 00
3

(define (tabular-spec? spec args)
(tabular-aux? spec (other-args spec args)) )
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3333333333s3issisiisss; MAKE-TABULAR-SPEC ;33353iissssis3si3si3sis

1

; LI ]
; specification SPEC and a list of specified outputs ARGS. HH
; Using the function (OTHER-ARGS SPEC ARGS), we can determine ;;
; the inputs to the system (all of those arguements in the HH
; specification that aren’t outputs). Given the specifica- ;

’ ’
;3 tion and the inputs, we call the function DISCRIMINANTS. HH
;+ It returns a complete tabular listing of the original ]
;3 specification. HH

H HH

L R R I O R I B I R R A N N N N I I S S B ) T3 [ .
I N NN NS NN R R R N R I I I R I I

(define (make-tabular-spec spec args)
(simplify (discriminants spec (other-args spec args) '())) )

S3aiiiiaaiiiiisiiiiiisiiys OUT-MDS-LISTS j3535553isiis333siiiissd
HH HH
;; Given a parsed specification in normal form (F = 1), 13
33 (OUT-MDS-LISTS F OUTPUTS) finds the minimal determining 33
;13 subsets, and associated cost, for each of the ouputs in HE
;3 OUTPUTS. An example is shown below: ;

i3 (1) (out-mds-iists *(((£) b a g) (£ (a) (g)) ((b) £ (g)))
i3 (£ g) ) HH

55 ((F 1 (RG))) Gy (F2 ¢(((B)) ((A))) AB) (G1 (LCFN) F) 53
HH (G2 ((AB) AB))

The format of the output is ]
H
i3 ( (OUTPUT COST FORM. MDS) (OUTPUT COST FORM MDS) ... ) HB

vhere OUTPUT represSents an argument found in OUTPUTS, MDS ;
represents the arguments of one of OUTPUT’s minimal 3
determining subsets, FORM represents a miniu SOP formula ;;
that produces OUTPUT using the arguments found in MDS, and ;;
; COST represents the gate-input cost associated with FOR'I. ;3

ws wu e
-
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;3 This function will only display the MDSs corresponding to a ;;
;; given output. To display all of the information concerning ;;
;s MDSs, including their associated cost and SOP formulas,
;3 place a semi-colon in front of the OPT1 lines below and
;3 Temove the semi-colon from in front of the OPT2 line.

..
’

(define (out-mds-lists f outputs)
(define (out-mds-lists-aux f outputs)
(cond ( (null? outputs) nil)
( else
(letx ( (z (car outputs))
(mds-lists (min-determining f z))
(mds-1lists* (attach-costs f z mds-lists)) )

(princ z) (princ " ") ;3 OPT1
(princ mds-lists) (newline) ;3 OPT4

; (display-cost mds-lists* z) (newline) ;; OPT2
(append

(splkice z mds-listsx)

(out-mds-lists-aux f (cdr outputs)) )))))
(princ "Minimal Determining Subsets:") (newline)
(out-mds-lists-aux f outputs) )

sirsissasasssssayissssisiss ATTACH-COSTS 3555535055333
) L]
; ATTACH-COSTS is called by the OUT-MDS-LISTS function. It
3 requires a specification F in normal form, an output Z and
;3 a complete list MDS-LISTS of minimal determining subsets :
;; for the output Z. It returns a list of information for a
;3 given output in the form:

-s we

;1 ( (COST FORM MDS) (COST FORM MDS) -¢COST FORM MDS) ... ) ;3

; It calculates the range of possible functions that can be -
;s used to express a given output. Using this range, it finds ;;
; FORM, the minimal SOP formula that produces the output in ;;
; terms of the arguments in the MDS. From this minimal, SOP ;3
; formula, the COST is generated using a pre-selected cost HH
;3 function. The cost is currently determined by the number ;;
;; of gate inputs, however, other options are described in the ;;
;3 COST.S file. These opticns can be selected by removing the ;;
;; appropriate comment marks (;;) from in front of the desired ;;




;3 option below. T'.s following example illustrates the use of
;3 this function:
H

i [1] (attach-costs ’(((b) (g) £) ((a) (g) £) (b a (£) g)) ;

i 't
i *((g) (ab))) ;
; ((1 €C6))) G) (2 (((B)) ((A))) A B)) ;

-e wo

S 6008 00000000000
IEEREEEREEEENNEEEEEEE]

RN N N N N N e R N I R R X
IR RN EENEEEENEEEEEEEEEEREEREEEEENEEEEEEEEEEEE)

(define (attach-costs f z mds-lists)
(define (costs-to-range range mds-lists)
(define (attach-one-cost range mds)
(letx ( (new-range (project-range range mds))
(min-formula (submin-interval new-range))

(new-cost (gate-input-cost min-formula)) )
i1 (new-cost (gate-input-costi min-formula)) )
;3 (new-cost (gate-cost min-formula)) )

(cons new-cost
(cons min-formula
mds ))))
(if (null? mds-lists)
Q)
(cons (attach-one-cost range (car mds-lists))
(costs-to-range range (cdr mds-lists)) )))
(costs-to-range (range f z) mds-lists) )




SRiasisaassisassaissiisasss SPLICE 33555issssiiiiiiiisiisiisiis
HH HiH
;3 SPLICE is an auxillary procedure called by OUT-MDS-LISTS. ;;
i+ It accepts as an input a list of the form: . HH
HH HH
;3 ( (COST FORM MDS) (COST FORM MDS) ... ) ]
HH HH
;3 and an OUTPUT. It returns a list of the form: HH
HH HH
;3 C (OUTPUT COST FORM MDS) (OUTPUT COST FORM MDS) ... ) HE
HH HI
R R R R R R R R R R R R R R R R A

(define (splice x lists)
(cond ( (null? lists) nil)
( else
(cons (cons x (car lists))
(splice x (cdr lists)) ))))

’
3 The auxillary procedure (DISPLAY-COST ARG-LIST Z) displays ;;
;3 a lisc ARG-LIST that contains information about the mds, 33
;3 the optimal two-level implementation using the mds, and the ;;

;3 associated cost. An example is shown below: HH
;5 [1] (display-cost *((2 (X G)) G X) (2 ((H X)) H X) 33
i (6 (V) XO ((2) X)) XY 2)) ’F) i
i3 [Q1F=G6X 3
3 cost is 2 HH
35 mds is (G X) i3
1 F=HX ¥
HH cost is 2 i
g mds is (H X) s
HH F=XY +X2° .3
- cost is 6 3
" mds is (X Y Z) ;s

oooooooooooooooooooooooooooooooooooooooo

)’”D'”)’D’!”’,)l)),),)),”’i’),DDDD!"")"D’P’D”””"O’!”,




(define (display-cost arg-list z)
(define (show-info fcn)
(define (show-info-aux fcn)
(define (write-termi term)
(cond ( (null? term)
(princ "") )
( (atom? (car term))
(princ (car term)) (princ " ")
(write-termi (cdr term)) )
(else
(princ (car (car term))) (princ "’")
(vrite~termi (cdr term)) )))
(cond ( (null? fcn)
(princ *()) )
( (null? (cdr fcn))
(vrite-terml (sort-term (car fcn)))
(princ nny
(else
(write~termi (sort-term (car fcn)))
(princ "+ ")
(show-info-aux (cdr fen)) )))
(cond ( (mewber nil fcn)
(princ "1") (newline) )
( (null? fen)
(princ "0") (newline) )
(else
(show-info-aux fcn) )))
(cond ( (null? arg-list) (princ ""))
(else 7
(let ( (cost (caar arg-list))
(entry (cadar arg-list))
(mds  (cddar arg-list)) )
(princ z) (princ " = ")
(show-info entry) (newline)
(princ " cost is ") (princ cost) (newline)
(princ " mds is ") (princ mds) (newline)
(display-cost (cdr arg-list) z) ))))
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»
sisissississsssissssssss COMP-DESIGN ;3i5si3ssss5isiisssissssss
*
’

; COMP-DESIGN is identical to DESIGN with the exception that ;
; the specification is processed in the form (F’ = 1) instead ;
; of the normal form (F = 1). It should be emphasized that ;;
; COMP-DESIGN will only work if MDS1 is used to calculate the ;;
; minimal determining subsets. This is because of the way N
; the interval, that bounds the output function, is defined. ;;
; By designing with the obverse specification, the costs are ;;
; assigned differently and hence a reduction in the length of ;;
; the search process is possible. The result of this function ;;
;3 is a system of Boolean formulas, defining each output, that ;;

we we wo weo

we woe we wo we we we

;3 are the obverse of what they should be. By passing HH
;s these outputs through a simple invertor, the desired HH
;; behavioral characteristics can be achieved. HH
HH HH

(define (comp-design circuit outputs)
(define (comp-aux f outputs)
(newline) (princ "Function:") (newline)
(Qist-terms f)
(let ( (mds (out-mds-lists f outputs)) )
(solve ' ((0 ())) mds outputs 1000) ))
(comp-aux (parse circuit) outputs) )
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B.2 PARSE.S File

R R R R R R R R R R R R R R R R R R R R R R N R R R )
HH HH
HH PARSE MODULE HA
i HH
R A R S R S S R R R R R R R SR TS R RS S R R F R R N F R R F R R
R R R R R R R R N R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R AR R
) | ]
;+ This module contains algorithms that use a formal approach ;;
;s to parsing a string or list of strings. Each of the strings ;;
;s represnets either a Boolean formula or an equation whose HH
;; two members are Boolean formulas. The approach consists of ;;
;; the following basic steps: HH
& ¥
H 1) The string representation of each Boolean formula is ;;
HH converted into an equivalent tokenized form. i3
HH 2) The tokenized list is then transformed into a prefix ;;
HH AND-OR-NOT representation. HH
' 3) The AND-OR-NOT representation is then converted to ;;
i an equivalent list-based SOP form. i
HH 4) Steps 1 through 3 are repeated for each Boolean HH
HH formula in a system, with the resulting list-based ;3
33 SOP formulas being added together. HH
H 5) The final result is then reduced to an equivalent HH
H sub-minimal form. HH
HH -
R R R R R R
$333333333s3sss5505s s PROGRAM DETAILS ;533335335333533333333333
t ) )
;3 FILE NAME: PARSE.S or PARSE.FSL HH
L ] 3
+; DESCRIPTION: 500~ .an to List-Based Parser HH
) '
;3 AUTHOR: Frank M. Brown with minor modifications ;;
HH by Eric J. Knutson HH
HH HH
+3 DATE: 2 NOV 90 o




.o
?

" we we we ws we we
we wo we we

-
we we wo

AUXILIARY FILES: From the BORIS System Software

TOOLS.FSL
DATA.S

GETTING STARTED: To get started, load PARSE.FSL and both
auxiliary files at the PC Scheme System
prompt. Then follow the instructions
and/or examples provided with some of the
algorithms below.

9060 0600000000000 0800 seoonse DARQE s ose 000 e o 00 0 s 00 R AR EEEEE]
IEEEENEENEEEEEEENEEENENEEN] PARSE I EEEEEEEEENENEEEENENNEENENEENENS]

The procedure (PARSE OBJECT) accepts either a string or a
list of strings. Each string is to represent either a

; Boolean formula or an equation whose two members are
; Boolean formulas. Corresponding to a Boolean equation G = H

is an equivalent Boolean equation F = 0; the procedure
PARSE replaces the equation G = H by the function F.
Similarly, the Boolean inclusion G < H is oquivalent to a
Boolean equation F = 0 (specifically, G H’ =-0). Thus each
of the strings in a list is treated as a Boolean function.
The list itself represents the Boolean sum of its
constituent functions. Each string is transformed by

; PARSE-STRING into a list-based SOP (sum-of-products) form.
; A list of strings is transformed into a list~based SOP form ;

representing the sum of the constituent functions.
Sample-sessions:

[1] (parse "((a + x5)? ! a’ ! b)”? b")
((CA) X5 B))

[2] (parse "((a + x5)? + tom * bill)’ b")
((xs (TOM) B) (X5 (BILL) B) (A (BILL) B) (A (TOM) B))

(3] (parse *("x = a" "y = a + b"))
(CCA) X) CA (X)) (CA) (B) Y) (A (Y)) (B (V)))

.
we We Wo W We Ws We wWs we we we
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¥ (4] (parse *("f = x? + y 2" HH
0 ng = x y) 4+ .
3 "h = x? ...y’ +z:n) ) s
H (G (2)) (6 () (V) (W) {(X) CH)) ((F) (X)) o
3 ((F) (G)) ((X)G2Z) (YG2Z) (FHX) H

A R R S A S SR S S S A A R R
(define (parse object)
(cond ( (pair? object)
(submin
(parse-system object) ))
( (string? object)
(. bmin
(parse-string object) ))
( else
(princ "I can’t parse the object.") (princ object)
(nevline) )))

(defire (parse-system lst)
(if (auwll? 1st) ()
(add (parse-string (car 1st))
(parse-system (cdr 1st)) )))

L I I I S N BN BN SN Y R R “DEQTON ¢ 0000006000000 s 00 .
’)"):J)l’)’)!)if;’));l;';;; PARSE DESIGN ))").)”’;)D!;)”);;;;Q;

”
; PARSE-DESIGN is an auxillary algorithm developed to work 53
;; with the DESIGN function. It differs from PARSE only in HH
;; that the parsed formula is not passed on to SUBMIN for HH
; further minimization. Since DESIGN takes the complement of ;;
; this parsed formula, minimization is- performed later by the ;;
DESIGN function. HH

ooooooooooooooooooooooooooooooooooooooooooooooo

(define (parse-design object)
(cond ( (pair? object)

(parse-system object) )

( (string? object)
(parse-string object) )

( else
(princ "I can’t parse the object.") (princ object)
(newline) )))
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S isissisasassssiiiisiss PARSE-STRING j33353535i3isisisiiiiiiis

(3]
)

we

14
.
1)
L)
’?
3
1
.
L

oo

The procedure (PARSE-STRING STRING) accepts a string

; representing a Boolean formula, and returns an equivalent

formula in list-based SOP (sum-of-products) form. If the
formula deaotes an equation, i.e., if it has the form

F = G, it is treated as if it were the string "(F) ! (®)",
the Exclusive OR of F and G. If the formula denotes an

inclusion, i.e., if it has the form F < G, it is treated as ;

if it were the string "F G'".
STRING-SYNTAX:

Arguments: Arguments may be any LISP symbols; lower-case
letters are accepted but are converted to
upper-case.

Operators: The legal infix operators are +,*, =, <, and !
(the latter denoting XOR). Multiplication may
be represented by juxtaposition, as well as by
use of the * operator. Complementation is
denoted by postfix ’.

Parcntheses: Subformulas may be set off by parentheses.
Subformulas involving the ! operator should be
enclosed appropriately in parentheses to avoid
ambiguities in operator-precedence.

(define (parse-string string)
(parse3 ;3 CONVERT TO LIST-BASED SOP
(parse2 ;3 CONVERT TO PREFIX AND-OR-NOT
(parsei string) ))) ;5 TOKENIZE




S 4200000800000 R . €0 0 0 00 0 0L LAEILE SIS ELISSIDN
l’"’)”""l.!';;;;;;;;;;;' PARSBi "DD”’DD’;”)””"””D"’

L
; This procedure tokenizes a string representing a Boolean

; formula. The following sequence of subordinate functions is
{ executed:

; STRING->LIST: Converts a string to a list of characters.
;3 SPECIAL-TOKENS: Converts special characters, such as #\+

; and #\SPACE, to tokens.

; MAKE-SYMBOLS: Character-sequences between special tokens
H are converted to symbols.

; REMOVE-SPACES: Space-tokens, previously left in place to
HH help delimit symbols, are removed.

R R R R R N e e B I O I B R A R I R L I B S B B
I N N R NN R RN EEE NN R )

(define (parsel string)
(remove-spaces
(make-symbols
(special-tokens
(string->list string) ))))

(define (remove-spaces tokens)
(cond (¢ (null? tokens)

() )

( (equal? (car tokens) ’space)
(remove-spaces (cdr tokens)) )

( else
(cons (car tokens)

(remove-spaces (cdr tokens)) )J)))

(define (make-symbols char-list)
(cond ( (null? char-list)
0
( (spec-token? (car char-list))
(cons (car .char-list)
(make-symbols (cdr char-list)) ))
( else
(cons (string->symbol
(list->string
(left-part char-list) ))
(make-symbols
(right-part char-list) )))))
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(define (spec-token? token)
(member token ’(< > space eq leq and or xor not one zero)) )

(define (left-part char-list)

(cond

(define
(cond

(define
(cond

(
(
(

(null? char-list)
Q)
(spec-token? (car char-list))
()
else
(cons (car char-list)
(left-part (cdr char-list)) ))))

(right-part char-list)

(
(
(

(null? char-list)

'0)

(spec-token? (car char-list))
char-list )

else

(right-part (cdr ‘list)) )))

(special-tokens char-list)

(
(
(

(null? char-list)

0

(equal? (car char-list) #\( )

(cons ’< (special-tokens (cdr char-list))) )
(equal? (car char-list) #\) )

(cons ’> (special-tokens {cdr char-list))) )
(equal? (car char-list) #\+ )

(cons ’or (special-tokens (cdr char-list))) )
(equal? (car char-list) #\’ )

(cons ’not (special-tokens (cdr char-list))) )
(equal? (car char-list) #\x )

(cons ’and (special-tokens (cdr char-list))) )
(equal? (car char-list) #\! )

(cons ’xor (special-tokens (cdr char-list))) )
(equal? (car char-list) #\= )

(cons ’eq fspecial-tokens (cdr char-list))) )
(equal? (car char-list) #\< )

(cons ’leq (special-tokens (cdr char-list))) )
(and (equal? (car char-1ist) #\SPACE )

(equal? (cadr char-list) #\SPACE ) )
(special-tokens (cdr char-list)) )



( (equal? (car char-list) #\SPACE )
(cons ’space (special-tokens (cdr char-list))) )
( (equal? (car char-list) #\NEWLINE )
(cons ’space (special-tokens (cdr char-list))) )
( else
(cons (char-upcase '(car char-list))
(special-tokens (cdr char-list)) ))))

R R R R R R] - o2 s 800800 R R EAREE] s e e 000
IEEEEEIRIEEEEE NN PARSE2 I EEENNEEEENEEEENENEENEEENEEERNN]

s
’
; This parser converts a Boolean formula, expressed as a list ;;
; of tokens, into binary prefix form. The possible -prefixes ;;
; are EQ, LEQ, AND, OR, NOT, and XOR (denoting Exclusive O0r). ;;

we we we we

;+ The underlying grammar is expressed by the following HH
i+ productions: $3
HH eqn --> exp EQ exp e
HH egqn --> exp LEQ exp HA
HE exp --> term -
HA exp ~--> term OR exp HH
HH exp --> term XOR exp HH
HH term --> factor HH
HH term --> factor AND term HH
HH term --> factor term H
H factor --> atom K

fa~tor --> < exp >
factor -=> factor NOT

* we

we wo we we we

; The normal precedence among AND, OR, and NOT is built into ;
; the grammar. Sub-expressions involving XOR should be HH
;; enclosed in parentheses, however, if there is any question ;;
;3 about precedence. H

(define (parse2 tokens)
(if (or (member ’eq tokens)
(member ’leq tokens) )
(parse-eqn tokens)
(parse-exp tokens) ))
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ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

HH eqn --> exp EQ exp HH
i eqn -=> exp LEQ exp ) HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2922222223999 929992993929993229999999399229939299 999299323599 2329%2)

(define (parse-eqn tokens)
(parse-eqn-aux ’() tokens) )

(define (parse-eqn-aux left right)
(cond ( (null? right)
’error-in-parsing-an-equation )
( (equal? (car right) ’EQ)
(1ist *XOR (parse-exp left) (parse-exp (cdr right))) )
( (equal? (car right) ’LEQ)
(1ist ’AND (parse-exp left)
(list ’NOT (parse-exp (cdr right))) ))
( else
(parse-eqn-aux (append left (list (car right)))
(edr right) ))))

ooooooooooooooooo R R R R R R R R R R R I R R I R ]
”’)”’9’)’)’D)"””"”))’!”’9"”1”””))’””’9")’)”)””

i HH
HH exp --> term MM
HH exp -=> term OR exp N
HH exp --> term XOR exp HH
HH HY
S R R R N R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

(define (parse-exp tokens)
(cond ( (parse-t tokens)) ( else (parse-exp-aux ’()
tokens) )))
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(define (parse-exp-aux left right)
(cond ( (null? right)
0 )
( (and (parse-t left)
(equal? (car right) ’OR)
(parse-exp (cdr right)) )
(list *0R (parse-t left) (parse-exp (cdr right))) )
( (and (parse-t left)
(equal? (car right) °’XOR)
(parse-exp (cdr right)) )
(1ist *XO0R (parse-t left) (parse-exp (cdr right))) )
( else
(parse-exp-aux (append left (list (car right)))
(cdr right) ))))

oooooooooooooooooooooooooooooooooooooooooooooooooooooo

HH term --> factor )i
3 term --> factor term HH
; term --> factor AND term HH
H

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

[ ]
!’"””””"”’”’!’l”””"”””””’))”)”’””’!”’)””)

(define (parse-t tokens)
(cond ( (parse-f tokens))
( else
(parse-t-aux ‘() tokens) )))

(define (parse-t-aux left right)
(cond ( (null? right)
0
( (and (parse-f left)
(equal? (car right) ’AND)
(parse-t (cdr right)) )
(1ist 'AND (parse-f left) (parse-t (cdr right))) )
( (and (parse-f left)
(parse-t right) )
(1ist *AND (parse-f left) (parse-t right)) )
( else
(parse-t-aux (append left (1list (car right)))
(cdr zight) ))))
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.................................................................

H HH
HH factor --> atom HH
- factor --> < exp > 33
HH factor ~-~> factor NOT HH
HH HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

D,l”)”!,,"’,"”’”’”’0’9”’)"D)!!””””)”’9,”,””””!

(define (parse-f tokens)
(cond ( (null? tokens)
0 )
( (and (null? (cdr tokens))
(not (spec-token? (car tokens))) )
tokens )
( (and (equal? (car tokens) ‘<)
(equal? (last tokens) '>) )
(parse-exp (all-but-last (cdr tokens))) )
( (and (equal? (last tokens) ’NOT)
(parse-f (all-but-last tokens)) )
(list ’NOT (parse-f (all-but-last tokens))) )
( else

O

(define (last 1st)
(car (reverse 1lst)) )

(define (all-but-last 1st)
(reverse (cdr (reverse 1lst))) )
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;s This parser converts a Boolean formula, expressed in binary ;;
;3 prefix form, into list-based SOP (sum-of-products) form. HH

;+ The possible prefixes are AND, OR, NOT, and XOR (denoting ;;
;3 Exclusive Or). The basic SOP-processing functions HH
;+ COMPLEMENT, MULT, and XOR (and the functions they call) 4
;; must be loaded. N

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2292529922292 9329232999 9939999929995 33923929259399935392939593923995%399

(define (parse3 formula)
(cond ( (null? formula)
(display "Syntax error detected in PARSE3.")
(newline) )
( (and (null? (cdr formula))
(equal? (car formula) ’[1]) )
(1ist °()) )
( (and (null? (cdr formula))
(equal? (car formula) ’[0}) )
0
( (and (null? (cdr formula))
(not (spec-token? (car formula))) )
(1ist formula) )
( (equal? (car formula) ’NOT)
(complement (parse3 (cadr formula))) )
( (equal? (car formula) ’OR)
(append (parse3 (cadr formula))
(parse3 (caddr formula)) ))
( (equal? (car formula) ’XOR)
(xor (parse3 (cadr formula))
(parse3 (caddr formula)) ))
( (equal? (car formula) ’AND)
(mult (parse3 (cadr formula))
(parse3 (caddr formula)) ))
( else
(display "Syntax error detected in PARSE3.")
(newline) ))) )

B-21




B.3 TABULAR.S File

.................................................................

299299232529 992925935399995925299933532392292229239239253223290232929233395392399?)

HH 4
HH TABULAR MODULE HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2399999999999 9939322399999 92 9229929992223 299922999299339752832999393)?
;s A specification for a given circuit design is condidered to ;;
;3 be TABULAR, if and only if it can be represented by a truth ;;
;s table. The proof for this was developed by Dr. Frank Brown ;;
;; and can be found as Theorem 9.3.1 (page 220) in his book H

;3 "Boolean Reasoning: The Logic of Boolean Equations”. The ;;

;3 purpose of this module is to provide a set of algorithms HH
;3 that work in conjunction with the BORIS Toolset. These H
;; algorithms will determine if a given ciruit specification ;;
;; is tabular. Also, given a non-tabular specification, we HH

;; can find a tabular specification for the given circuit. At ;;
;; this point the algorithms are designed to be used indepen- ;;

;; dently. Additional work will be required to incorporate HH
;3 them as auxillary tools within the BORIS Framework. HH
,; LI ]

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

s3ssssssssssssssssssssss PROGRAM DETAILS ;;5333333333333355333833,
* ’?
;3 FILE NAME: TABULAR.S or TABULAR.FSL HH
E ) E 28 4
33 DESCRIPTION: Tabular Specification Development System ;;
HH HH
;+ AUTHOR: Eric J. Knutson HH
HH HH
;3 DATE: 18 JUL 90 . HE
& i
;3 LANGUAGE: PC SCHEME H
HH HH
+3 AUXILIARY FILES: From the BORIS System Software HH
e N
HH TOOLS.FSL .
HH PARSE.FSL :s
HH DATA.S i
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GETTING STARTED: To get started, load tabular.fsl and all
auxiliary files at the PC Scheme System
prompt. Then follow the instructions

and/or examples provided with each of the

algorithms found below.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

.
L)
.o
L8]

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

;3 TABULAR? accepts an equation (or set of equatioms) in

standard BORIS format and a list of specified outputs

; (arguements). It returns #T (true) if the system described

by the inputs is tabular and ’() (false) if the system is
non-tabular.

; TABULAR? calls an auxillary function TABULAR-AUX? and
i+ passes to it the parsed equations (in a list format) and a

list of the other arguements that the outputs will be
evaluated with respect to. TABULAR? then goes through a
recursive process to generate the discriminants that
describe the specification. By definition, if any of the
discriminants evaluate to something other than zero or a

; term on the designated output variables, then the specifi-
cation is non-tabular and the function returns ’() (false).

Otherwise if all of the discriminants evaluate to either

; Zero or a term on the output variables, then the specifi-
: cation is tabular and the function returns #T (true). An
;; example is shown below:

[1] (tabular? °("q’ j+qk’ s +q’t+qrxr’t'"
"0O=rs+rt+sth)
'(j k) )
#T

(define (tabular? equations args)

(et ( (f (simplify (complement (parse-system equations)))))

(tabular-aux? f (other-args f args)) ))
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(define (tabular-aux? f new-args)
(cond ( (ox (null? new-args)
(independent? f new-args))
(single-term? (unabsorb f)) )
(else
(and (tabular-aux? (divide f (bar (car new-args)))
(cdr new-args) )
(tabular-aux? (divide f (car new-args))
(cdr new-args) )))))

(define (single-term? f)
(null? (cdr £)) )

(define (independent? f args)
(independent-aux? (get-args f) args) )

(define (independent-aux? argsi args2)
(cond ( (null? args2))
( else
(and (not (member (car args2) argsi))
(independent-aux? argsl (cdr args2)) ))))
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MAKE-TABULAR accepts as an input a non-tabular specification;;
consisting of one or more equations and a list.of proposed ;;
outputs (Z-values). The equations get parsed and reduced ;;

we
we ®s we we we wo

;; into a single equation which is set equal to one. With HS
;; the outputs provided, we determine the inputs (all the rest ;;
;; of the literals). This information is then passed on to HH

;3 DISCRIMINANTS which returns a complete tabular listing of ;;
;s all the discriminants. Finally this listing gets sent to ;;

;s OUTPUT-TABULAR where the final result is produced. An M-
;3 example is shown below: s
HH [1] (make-tabular ’"q’ j +qk’=sq t+qr’ gon s
HE "o = rs+rt+s t" 33
HH ’(I‘ S t) ) HH
HH How Do You Want to Display Your Result? HH
Y 1. Raw List Form s
HH 2. Horizontal SOP Form :s
HH 3. Vertical SOP Form )
HH 4. Reduced Blake Canonical Form HH
i i3
HY What Choice Do You Want To Select? 4 HH
HH HH
HH 1= JK'R’S’T’ + J°Q°S’T’ + J KRS T’ + J Q°R’S T? 0
i K Q RS’T + K’Q R’T i
HH 0 .

.. .o
1) L ]
oooooo L R I IR A BN R R S R R R R R R N I N N A A I I N R I A R R R A A R I L I )
R N N R S R N EE R E S R E R EEEE R R R E R E R

(define (make-tabular equations args)
(let*x ( (£ (simplify (complement (parse equations))))
(other (other-args f args))
(listing (discriminants f other ’())) )
(output-tabular listing) ))
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This function accepts an equation (in list form) and a list ;
; of inputs (X-values) from MAKE-TABULAR. The accumulator ;
; (acc) is initialized to NULL. DISCRIMINANTS generates a ;
;3 tabular list of all the discriminants with respect to the ;;
i inputs. As the discriminants are being generated, they are ;;
; filtered to ensure each of the discriminants is either zero ;;
;3 or a single term. The selection of which term to use and ;;
;3 which terms to eliminate is a deterministic process ;
;3 depending on the order of the terms.

3223222293592 295355525999932229922929999939992339323239999999993%39)

(define (discriminants f other acc)
(cond ( (null? other)
(if (single-term? f)
(multiply (list acc) f)
(1ist (car (multiply (list acc) £))) ))
(else
(append
(discriminants (divide f (bar (car other)))
(cdr other)
(append acc (list (bar (car other))))
(discriminants (divide f (car other))
(cdr other)
(append acc (list (car other))) )))))

Piiiisisisaaisisaisiissys OUTPUT-TABULAR ;53535333533353333335535033
Y i
;3 This function allows the user to select his choice for the ;
;s output form of a resulting tabular equation. It is called ;
i+ by the MAKE-TABULAR function and provides the user four H

»

-e we

;3 output optiong: .
b i
HH 1. Raw List Form i
HH 2. Horizontal SOP Form s
HH 3. Vertical SOP Form .
HH 4. Reduced Blake Canonical Form i3

ooooooo .9 0.0 6000060000090 P VL 009 E 0PGS0 000 E ISP EEEEEEEIEOELENIIETSD
IR RS EEEEEE R EEEEE SRR S EEEE R R R EE N EEEE SN NN RN EEE NN RN




(define (output-tabular result)
(scroll 5) :
(writeln "How Do You Want To Display Your Resu1t7")
(newline)
(writeln "1. Raw List Form")
(vriteln "2. Horizontal SOP Form")
(writeln "3. Vertical SOP Form')
(writeln "4. Reduced Blake Canonical Form")
(scroll 13)
(display "What Choice Do You Want to Select? ")
(let ( (choice (read)))
(cond ( (eqv? choice 1)
(begin (scroll 2)
(display result) ))
( (eqv? choice 2)
(begin (scroll 2)
(display "1 = ")
(show-h result) ))
( (eqv?-choice 3)
(begiin. (scroll 2)
" (writeln "1 =")
"(show result) ))
( (eqv? -chdice 4)
(begln ‘(scroil 2)
- (d:gsplay Hy = 1)
(show-h (bcf Tesult)) ))
(else (writeln "Invalid Input")) )))

L2 ] ’?
;+ This is a simple function that inserts a selected number of ;;
;3 blank lines at the location from which it is called. You ;;
;3 simply input the number of lines that you would like to HH
;3 scroll. It is used as part bf-the OUTPUT-TABULAR Function. ;;
! LR

ooooooooooooooo IR NN A N I I S I I Y ;o-oootoa‘ S e 00 s 000 sPLessee
"””))ll)"’)),’ IR R R R R R R BN E R L EEE RN ERNEEEEEEEEEE NN EEERIEEEE]

e

(define (scroll lines)
(if (zero? lines)
(princ nn )
(begin (newline)
(scroll (- lines 1)) )))

B-27




B.4 MDS.S File

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

)l!"l"')))'l)”)'!l””),))!,””l”’)”))’))’)’))))))”’t'!,)’
HH 93
HH MDS MODULE HH
HH HH

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

,)”l”biil”’,D'lD""D’l"”'")”"””")""’,””””)',I
; HH
;; The algorithms that follow are used in conjunction with the ;;
; DESIGN MODULE to perform a dependency analysis on a circuit ;;
;3 specification’s variables. This analysis results in a list ;;
;

;; of minimal subsets of variables (inputs and/or outputs) HH
;s that can be used to determine a given output. By finding ;;
;; the MDSs, we eliminate the necessity to consider aill 1
;3 possible combinations of variables. This reduces the HH
;; search space dramatically if compared to an exhaustive 1

;; search process. The only drawback is that the use of MDSs ;;
33 is not guaranteed to lead one to an optimal solution. It ;;

;; is however, a powerful heuristic that, when used in an HH
;; optimization process, consistently leads one towards a HH
;; better solution. H
t 8 ] ’

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

sisissasssissiisisissis s PROGRAM DETAILS 335535335355553353333543
9 ;’
;; FILE NAME: MDS.S or MDS.FSL HH
i HH
;3 DESCRIPTION: Calculates Minimal Determining Subsets HH
HH HH
;3 AUTHORS: Frank M. Brown & Eric J. Knutson HN
1 i HH
;3 DATE: 4 NOV 90 .
HH HH
+3 AUXILIARY FILES: TOOLS.S from the BORIS System Software HH
HH HH
+3 GETTING STARTED: This module requires that TOOLS.FSL be M
HH loaded at the PC Scheme System prompt HH
i along with MDS.FSL. Follow the examples ;;
33 provided with the algorithms below. HH
HH HH

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

”’)’)))”””’,)”)",’))’)””Dl’))”””),’)’i”ll"’)”)’i”’
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;3 This function is used by DESIGN, a circuit optimization ;
;3 algorithm. MIN-DETERMINING accepts as its inputs a parsed ;

;3 specification F in normal form and an argument ARG which HH
;s represents one of the specified outputs. It returns a list ;;
;3 of minimal determining subsets for ARG. Five different HH
;; methods can be used to calculate the MDSs. They all HH
;3 produce identical results and differ only in the method HH
7+ used to achieve the results and their corresponding HE
;3 efficiency. A method can be chosen by removing the comment ;;
;3 symbols (;;) from in front of the desired choice. 53

;; The choices are as follows: 5

;; 1) MIN-DETERMING-OLD - Original MDS Algorithm using a  ;;

i Redundancy Elimination Technique. 3
HH 2) MDS1 - Redundancy Elimination Technique using an HH
M alternative interval to bound the output. HH
HH 3)- MDS2 - Opposing Literals Technique using HH
s multiplication & absorption process. HH

HH 4) MDS3 - Opposing Literals Technique using a Boolean HH
HH expansion process. e
HH 5) MDS4 - Opposing Literals Technique using a Boolean HH
HH expansion process with intellegent selection ;;
HH of the variable to expand on. HH

;; An example of using MIN-DETERMINING is: HH
i3 [1] (min-determining ’(((b) (g) £) ((a) (g) £) (b a (£) g)) ;;
i '£)) i
;3 (CG) (A B)) i

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

IR EEEEEEEEENEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEEEEEEEEEEEE)
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(define (min-determining f arg)
;3 (min-determining-old f arg) )
;3 (mds1 £ arg) )
;; (sort-mds (mds2 (product-of-sums f arg))) )
;3 (sort-mds (unabsorb (mds3 (product-of-sums f arg)))) )
(sort-mds (unabsorb (mds4 (product-of-sums f arg)))) )

;3 The function (PRODUCT-OF-SUMS F ARG) accepts as its inputs
;s a parsed specification F in normal form and an argument

;+ ARG. It produces a product-of-sums formula such that if

;s all the products were multiplied out and redundant terms

; absorbed, the remaining terms correspond to the minimal

; determining subsets associated with ARG. MDS2, MDS3 and

;s MDS4 all present unique ways to perform this multiplication
; process and produce the MDSs,

;3 Note that the LITERAL function below must be modified

according to which MDS procedure one is using. If MDS3 or
MDS4 were being used the result a result will appear as:

[1] (product-of-sums ’(((b) (g) £) ((a) (g) £) (b a (£f) g))
; 'f

; ((B G) (Aa))
However, if MDS2 were used the result would appear as:

(2] (product-of-sums ’(((b) (g) £) ((a) (g) £) (b a (£) g))

(((B) (G)) (CA) (G)))

oooo
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(define (product-of-sums f arg)
(define (mult-list-list 1lstl 1st2)
(define (remove-extra-terms lst)
(cond ( (null? 1st)
*'())
( (member (car 1st) (cdr 1lst))
(remove-extra-terms (cdr 1lst)) )
(else
(cons (car 1lst) (remove-extra-terms (cdr 1lst))) )))
(define (mult-term-list term lst)
(define (opposed p q)
(define (opposed-aux p q acc)
(cond ( (null? p)
acc )
( (member (bar (car p)) q)
(opposed-aux (cdr p) q (cons (literal (car p))
acc) ))
(else
(opposed-aux (cdr p) g acc) )))
(opposed-aux p q *()) )
(if (null? 1st)
()
(let ( (opposed-literals (opposed term (car 1lst))))
(if (null? opposed-literals)
(mult-term-list term (cdr 1lst))
(cons (sort-term (opposed term (car lst)))
(mult-term-list term (cdr 1st)) )))))
(if (null? 1sti)
()
(remove-extra-terms
(append (mult-term-list (car lsti) 1st2)
(mult-list-list (cdr 1lsti) 1st2) ))))
(mult-list-list
(divide f arg)
(divide £ (bar arg)) ))
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’? ?
;3 For MDS3 or MDS4, this function accepts an input X and HH
;3 returns it in an atomic form. For example: H
) LR
3 [1] (literal ’z1) or [1] (Qiteral ’(z1)) HH
HH 21 21 HH
;’ ’;
;3 For MDS2, this function accepts an input X and returns it HH
;; enclosed in parenthesis. For example: HH
t ) ’
] [2] (literal ’z1) or [2] (literal ’(z1)) HH
i (21) (z1) . i
HH HH
;; Ensure that the ¢omment symbols (;;) are removed from in 3
;; front of the lines of the desired option below. HH
HH M
HHHHHHHHH S S R R R R R R R R R R R A R R R R R R R R R R A R R R R R R R R R

(define (literal x)
(if (pair? x)
(bar x) ;3 Used for MDS3 & MDS4
x)) ;; Used for MDS3 & MDS4

HH X 13 Used for MDS2
HH (bar x) )) ;; Used for MDS2
Piiiisaiisasssisssassssssssss SORT-MDS ;i3ssiisssssssssssisssisss
;; (SORT-MDS LST) is an auxiliary function called by 0

;3 MIN-DETERMINING. It accepts a list of minimal determining ;;

;; sets and sorts them alpha-numerically and by the size of ;;
i+ each set, An example is shown below: HH
LR !
i3 [1] (sort-mds 7((23 z1 wu) (x a 22) (c b) (=21 x w)))  ;;
;v ((BC) (AX22) (WX21) (UWZ1 23)) HH
HY HH
R R R R R R R R R R A R R R A R R R R R R R R R R
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(define (sort-mds 1lst)
(define (sort-terms lst)
(cond ( (null? 1st)
()
( (null? (car 1lst))
(sort-terms (cdr 1st)) )
(else
(cons (sort-term (car 1st)) (sort-terms (cdr 1lst))) )))
(define (size-sort f)
(define (insert-term term 1lst)
(define (lower-term? terml term2)
(cond ( (null? termi)
()
( (lower-literal? (car termi) (car term2))
3T )
( (equal? (car termi) (car term2))
(lower-term? (cdr termi) (cdr term2)) )
(else *()) ))
(cond ( (null? lst)
(list term) )
( (< (length term) (length (car 1lst)))
(cons term 1lst) )
( (and (= (length term) (length (car 1lst)))
(lower-term? term (car 1lst)) )
(cons term 1lst) )
(else (cons (car 1st)
(insert-term term (cdr 1st)) ))))
(if (equal? (length £f) 1)
f
(insert-term (car f) (size-sort (cdr £))) ))
(size-sort (sort-terms 1lst)) )
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ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

HH Opposing Literals Technique Using Boolean HH

HH Multiplication and Absorbtion. i
H s
R R R A R R R R R R A R R R R R S R S R R SR F SR R S R
HH '
;3 This function uses an opposing literals technique to HH
;3 find the minimal determining subsets. The technique was ;;
;+ introduced in Section 7.2.3 of Brown’s book "Boolean HH
3+ Reasoning: The Logic of Boolean Equations."” To avoid HH
;3 creating an inordinate amount of redundant terms as HH

;s the multiplication process is carried out, we introduce a ;;
;3 process that repetitively carries out multiplications and ;;
;3 absorbitons.

- -
we weo

; When using MDS2, be sure to remove the appropriate comment
; marks (;;) and add the appropriate comment marks in front

; of the designated lines in the LITERAL function above. This
; translates each product, in the product-of-sums formula,

; into a form that is recognized by the MUPROD operator.
’

we weo

a wse

we Wo we ws woe we we
we w

wo wo

L R I R I R R R N R R N R N A A I I I I N S A S A B S N A S R N R R AP S IR S S S S S T ST S S S S N )
IR R A R N NN NN R NN N

(define (mds2 1st)
(cond ( (null? (cdr lst))
(car 1st) )
(else
(mds2
(cons (unabsorb (muprod (car 1st) (cadr 1lst)))
(eddr 1st)) ))))
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oooooooooooooo [ R R R R EEE R EEEER) MDSs e s s 000 s s000 00000000000 0s0 00
2992999993222 993292 90293999339 IR EREREEEEENNEEEEIEIEIEIEEEEEERE]

I EEEEEEEREEREEEEEEEEREEEEEE R EEE S EE R E EE RN EE N EENFEEREEEEEENIEENE N NS NI

;+ This algorithm is similiar to MDS2. It differs only in the ;;
;s way that the product-of-sums formula is translated into a

;3 sums-of-products. While MDS2 uses a multiplication and H
;3 absorption process, MDS3 utilizes a Boolean expansion HH
;3 technique. This function accepts as its input LST, which ;;
;3 represents a product-of-sums formula. The variable x, HH
;3 which we will expand on, is chosen as the first literal HH
;+ appearing in LST. The correct expansion is: HH
’; ,;
HH f=xS+RS HH

o wse

-
we we we

]
; where R is the product of all factors involving x with x

; set to 0 and S is the product of all factors not involving
; x. If xS or RS are not in sum-of-products form, then

;+ they are expanded further. This expansion continues in a

:; racursive fashion until f is reduced to a sum-of-products
;; form where each product is a term. For example, a call to
;; MDS3 using the POS formula (s + c)(b + c)(b + d + s)(a + ¢)
;; appears as follows:

we
e we ws we

¢ we we we we we

-
wo We we we we we wo

£+ [1] (nds3 *((s ) (b <) (bds) (ac)))
L. ((SBA) (SBC)(SCA (SC) (CB A (BC) (CA (DY)

we wo we

L R R R R N R R A N R N N R N O R R A N I B I R N A I N N N A N A S B N S N N S S I SR N B )
I EEEEEEEEENEEEEEE SN SR EEEEEEEEEEEEEEEEE RS EEEEE R EEEEEEEEEEEEEN]
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(define (mds3 lst)
(cond ( (null? 1st)
Q)
( (null? (cdr 1st))
(sop 1st) )
( (null? (cdar 1st))
(mult-all (caar 1lst) (mds3 (cdr 1st))) )
(else
(let* ( (x (caar 1st))
(S (get-s 1st x))
(R (get-R 1st x)) )
(cond ( (and (null? S) (null? R))
(list (list x)) )
( (null? S)
(append (1list (list x)) (mds3 R)) )
( (null? R)
(mult-all x (mds3 S)) )
(else
(append (mult-all x (mds3 S))
(mds3 (append R S)) )N

LST represents a POS formula and X represents a variable

above, we have:

H [1] (get-s ((s c) (bc) (bds) (ac))
H ((BcC) (A C))

(define (get-S 1lst x)
(cond ( (null? 1st)
1st)
( (member x (car 1lst))
(get-S (cdr 1st) x) )
(else (cons (car 1st)
(get-S (cdr 1st) x))) ))

B-36

(GET-S LST X) is called from the MDS3 and MDS4 algorithms. ;;

1

1

H

; to expand on, The result is the product of all factors not ;;
; involving X. Using the same example ~s described in MDS3

H

H

oooooo




;3 (GET-R LST X) is called from the MDS3 and MDS4 algorithms. ;;
- 33 LST represents a POS formula and X represents a variable

’
;s to expand on. The result is the product of all factors M
;+ involving X with X set to 0. Using the same example as HH
;; described in MDS3 above, we have: HH
HH [1] (get-r *((s ¢c) (b c) (bds) (ac))) HH
i ((¢) (8 ) i
HH HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2290229392999 92 2399229292299 993329929 292999292999 9299929299329299212 )

(define (get-R 1lst x)
(cond ( (null? 1lst)
1st)
( (single-x7 1st x)
0
( (not (member x (car 1lst)))
(get-R (cdr 1st) x) )
(else (cons (remove x (car 1lst))
(get-R (cdr 1st) x))) ))
sissiiaaaaasaasasaasisiy SINGLE-XT jiissssassssssisssisiiisiis
)
;; This is an auxiliary function called by GET-R that HH
;3 determines if a given POS forumula contains a product with ;;
;; only one literal and that literal is equal to X. As an HN

;3 example: HH
;3 [1) (single-x?7 ’((a b) (c) (a d) (c e)) ’c) HH
HEE ¥) HH
;3 [2] (single-x? '((a b) (a d) (c e)) ’c) HY
s O i

(define (single-x? 1lst x)
(cond ( (null? 1st)
Q)
( (and (null? (cdar 1lst))
(equal? x (caar 1lst)) )
#T )
(else (single-x? (cdr 1st) x)) ))
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ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

;3 (MULT-ALL ITEM LST) is an auxiliary function, called by HH
;s MDS3 and MDS4, that multiplies every term in the SOP form ;;

;3 LST by the ITEM. For example: ]
: [1] (mult-all ’a *((b ¢) (c d) (£ g))) HH
HH ((@bc) (acd) (afg) HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

IR EEEENEEEEEEEEEREENEEEREENEREEEEREEEEEENESEEE RS AR EEEE R EEEEEEEEEERN)

(define (mult-all item lst)
(define (mult-factor item 1lst)
(if (null? 1st)
()
(if (member item 1lst)
(list 1st)
(1ist (cons item 1st)) )))
(if (null? 1st)
()
(append (mult-factor item (car 1lst))
(mult-all item (cdr 1st)) )))

””"’)l)!””',’;”,;;;)”’ SOP )’))!l”)’))’))”)’:;;;;;;;;;;
i ’
;; (SOP LST) is an auxiliary function called by MDS3 and MDS4¢ ;;
;3 that converts LST (a sum of literals) from a POS format to ;;

;3 SOP format, For example: HH
' &
i [1] (sop *((a b ¢))) g
HH ((a) (B) (c)) .
HH HH
R R R A R R A R R R R R R R R R N R R R R R R R R R R R R R R R R R R R R R R R R R A R T

(define (sop 1st)
(if (nul17? (car 1st))
0
(append (list (list (caar 1st)))
(sop (list (cdar 1st)))) ))
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ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

HH Jpposing Literals Technique Using Boolean Expansion HH
HH With Intelligent Variable Selection. HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

$992299523 9299092993399 2929329992959 9909292995399999992999299299929)2)

* ??
;s This technique is identical to the one described in MDS3 HH
;+ with one notable exception; the literal that is chosen to HH
;3 expand on is the one that appears most frequently in the HH
;3 expression being expanded. It uses the auxiliary function ;;
. 17 GET-MAX to determine the variable to expand on. HH
LR ] L

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2329325250928 53 2039999932022 INNNINDNDNDINDNDNINININDNISLNNIDLIYD

(define (mds4 1st)
(cond ( (null? 1st)
*())
( (null? (cdr 1st))
(sop 1st) )
( (null? (cdar 1st))
(mult-all (caar 1lst) (mds4 (cdr 1lst))) )
(else
(let* ( (x (get-max (make-count (flatten 1lst))))
(s (get-S 1st x))
(R (get-R 1st x)) )
(cond ( (and (null? S) (null? R))
(list (list x)) )
( (null? S)
(append (list (list x))
(mds4 R)) )
( (null? R)
(mult-all x (mds4 S)) )
(else
(append (mult-all x (mds4 S))
(mds4 (append R S)) )))N))
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ooooooooooooooooooooooooooooooooooooooooooooooooooooo

e LI 4
;; (MAKE-COUNT LST) is an auxiliary function called by MDS3 HH
;3 and MDS4. It counts the number of times each literal M
;s appears in a given list. It returns a list composed of HH
;s each literal and the number of times it appeared. For HH
;3 example: HH
LI ] ;,
HH [1] (make-count (s cbcbds ac)) o
i ((62) (¢c3) (B2 (D1) (A1) i
L 9

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2929299999259 992 9999599999592 2352299939922 92 9229290209992 829859292)9 )

(define (make-count lst)
(define (count-literals item 1lst)
(cond ( (null? 1st) 0)
( (equal? item (car 1lst))
(+ 1 (count-literals item (cdr 1lst))))
(else (count-literals item (cdr 1lst))) ))
(define (remove-all item lst)
(cond ( (null? 1lst)
()
( (equal? (car ist) item)
(remove-all item (cdr 1lst)) )
(else (cons (car 1lst) (remove-all item (cdr 1st)))) ))
(Qet ( (item (car 1st)))
(if (null? 1st)
()
(cons (list item (count-literals item lst))
(make-count (remove-all item 1st)) ))))

piisesassasissiissasissssesss GET-MAX isssssssissssissisisssiss
HH HH
3 (GET-MAX LST) is an auxiliary function called by s
;; MAKE-COUNT. It accepts a list containing literals and N
;; number of times they appear in an expression. It returns ;;
;+ the literal that appears the most often in the list. HH
HH HH
i3 [1] (get-max *((S 2) (C 3) (B 2) (D 1) (A 1))) HH
HH c HH
HH HH
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(define (get-max 1lst)
(cond ( (null? (cdr 1st))
(caar 1st) )
( (> (cadar 1st) (cadadr 1st))
(get-max (cons (car 1st) (cddr 1st))) )
(else (get-max (cdr 1st))) ))

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

;3 Given a function f and an output z, MDS1 uses a redundancy ;;

;3 elimination technique to find the minimal determining HH
;; subsets of £ in terms of z. The technique was introduced ;;
;3 in Section 4.9 of Brown’s book "Boolean Reasoning: The H

;3 Logic of Boolean Equations." Given a specification in the ;;
;3 form £ = 1, the output z is expressed as an interval of the ;;
;3 form [LO,HIGH¥] where LOW is the lower bound expressed by ;;
H
i L0 = (£/27)? * (f/2) ;
H H
;; and HIGH* is the complement of the upper bound expressed by ;;

;; HIGH* = (£/2’) * (f/z)! . i

;3 Using a depth-first search process, MDS1 finds the minimal ;
;; determining subsets for functions in that interval. H
H

oooooooooooooooooooo I N R R N R I R R N N N N R N R I I I I RN S
IS EEEENEEEREEEEEEEEE EEE S EEE RS EEEEEEEEEEEEENE RN EEEREREENERENENEEE)

(define (mdsi £ z)

(let* ( (args (remove z (find-args £)))
(lo-hi* (interval f 2))
(1o (car lo-hix))
(hix (cadr lo-hix))
(1ists0 *((O) O ON
(max-elims (search listsO lo hi* args)) )

(complement-sets max-elims args) ))
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H Redundancy Elimination Technique i
5 &

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

”’l"!’)’”"”,,!)")",””””,”)””””"”)”””’,"”)’

HH HH
;3 This algorithm is identical to MDS1 except that the output ;;
;3 2 is expressed as an interval of the form [LO,HI] where 3
;3 LO = £/2’ and HIGH = £/z. 3
HH HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2323222992 9999 9299292232229 999292999999292939999999029959322909322992923)

(define (min-determining-old f z)
(let* ( (args (remove z (find-args f)))
(£0  (divide f (bar 2)))
(f1  (divide f 2))
(1ists0 2 (CO)) O ON
(max-elims (search listsO £O f1 args)) )
(complement-sets max-elims args) ))

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

;3 Given an interval [LO,HI] of Boolean functions, the 3
;3 procedure (MDS LO HI) returns the minimal determining HH
;s subsets for functions in the interval. HH
L 28 ] e

(define (mds lo hi)
(let* ( (args (find-args (append lo hi)))
(hi* (complement hi))
(1ists0 7 (CO) O ON
(max-elims (search 1listsO lo hi* args)) )
(complement-sets max-elims args) ))

sissasissassisssssssasessy INTERVAL sissssisssssssssssssississis

.
’
[
!
.
?

’ t
; (INTERVAL F X) returns a list of the form (L0 HI%), where ;;
7+ LO is the lower limit, and HI* is the complement of the -
;3 upper limit, of the interval of allowed valucs of X implied ;;
;+ by the equation F = 1, HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

)’)D’”’)l)’)"))))!)”’))ll’)’.”')l)"’)’l))”'})")’D”’D”)))
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(define (interval f x)
(Qet* ( (£0 (divide £ (bar x)))
(f1 (divide f x))
Qo (simplify (mult f1 (complement £0))))
(hix (simplify (mult £O (complement £1)))) )
(1ist lo hi*) ))

o0
’?
.
s

; (COMPLEMENT-SETS SETS ARGS) is an auxiliary function called

we

;s by MDS, MDS1 and MIN-DETERMINING-OLD. SETS represents a HH
;s a list of maximal-redundancy subsets and ARGS is a list of ;;
;s all possible arguments in the original specification. This ;;
7+ function returns a list of minimal determining subsets. 1
;3 They represent the complement of the maximal-redundancy HH
;3 subsets with respect to ARGS. An example is shown below: M

i [1] (complement-sets '((f hy z) (f gy z) (f gh)) s
’i . "fghxyz)) 3
HH ((GX) HX) (XY 2Z) i

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2522222329292 9332299999292 2929922299229 0 22939299999 992 22393273

(define (complement-sets sets args)
(define (complement-set set args)
(if (null? set)
args
(complement-set (cdr sat)
(remove (car set) args) )))
(if (null? sets)
Q0
(cons (complement-set (car sets) args)
(complement-sets (cdr sets) args) )))
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T veors SEARCH s::::: srasssazessusassaryes
R R R A e S S A A T S R R R A T R R R A
. .
’? L ]

;3 (SEARCH LISTS FO F1 ARGS) accepts the following arguments: ;;

H LISTS has the form (OPEN CLOSED MAXED), each component ;;
of which is a list of subsets of ARGS. OPEN comprises ;;

’

H subsets known to be eliminable, but not yet known to ;;
HH be maximal. CLOSED comprises minimal subsets known HH
HH not to be eliminable. MAXED comprises maximal HH
HH eliminable subsets. All subsets are ordered, for 1
HH convenience. HH
HH F = 1 represents the known information. HH
o FO = F/X’ and F1 = F/X, where X is the deduced argument. ;;
HH ARGS is the list of arguments of FO and Fi. HH

HH i
R R R R R AR R R A R R R R R R R AR R R R R R R R R R R R R R R R R R R R R R R R R R R AR RN
(define (search lists £f0 f1 args)
(if (null? (car lists))
(third lists)

(search (expand lists fO f1 args) £fO f1 args) ))
piissassisssssississasssss EXPAND sissssssssssssssiseiiiisiss

returns the new LISTS resulting from one cycle of

?
; EXPAND is an auxiliary procedure called by SEARCH that
; expansion.

we we we woe we o

-
we We woe we wo woe we

-e

(define (expand lists f0 f1 args)
(define (poss-children lists args)
(define (successors list args)
(if (null? list)
args
(cdr (member (car list) args)) ))
(it (null? (car lists))
0
(successors (head lists) args) ))
(define (harvest lists fO f1 possibles) 1+ HARVEST
(define (eliminable? subset £0 f1) ;3 ELIMINABLE?
(let* ( (e0 (edis £0 subset))
(el (edis f1 subset)) )

; POS-CHILDREN
; SUCCESSORS

we weo
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(if (equal? (mult e0 e1) ’())
T
O
(let ( (subset (cons (car possibles) (head lists))) )
(cond ( (null? possibles) ’())
( (null? (car lists)) *())
( (eliminable? subset fO f1)
(if (equal? (head lists) ’())
(cons (list (car possibles))
(harvest lists fO f1 (cdr possibles)) )
(cons subset
(harvest lists fO f1 (cdr possibles)) )))
( else
(cons (cons ’* subset)
(harvest lists fO f1 (cdr possibles)) )))))
(define (distribute yield lists)
(define (remove-head lists) :: REMOVE-HEAD
(list (cdar lists)
(second lists)
(third lists) ))
(define (redundant? set sets) ;+; REDUNDANT?
(cond ( (null? sets) ’())
( (subset? set (car sets))
*T )
( else
(redundant? set (cdr sets)) )))
{define (all-starred? subsets) 13 ALL-STARED
(and (equal? (caar subsets) ’*)
(or (null? (cdr subsets))
(all-starred? (cdr subsets)) )))
(define (head-to-max lists) ;3 HEAD-TO-MAX
(list (cdar lists)
(second lists)
(cons (head lists)
(third lists) )))
(define (distribute-aux yield lists) ;+ DISTRIBUTE-AUX
(cond ( (null? (car lists)) lists)
( (null? yield)
(1ist (cdar lists) (second lists) (third lists)) )
( (equal? (caar yield) °’*)
(cond ( (absorbed? (cdar yield) (second lists))
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(distribute-aux
(cdr yield)
lists ))

( else

; Put this subset in the closed list.

(distribute-aux
(cdr yield)
(list (car lists)
(cons (cdar yield)
(second lists) )
(third 1lists) )))))
( (redundant? (car yield) (third lists))
; A subset of one of the max-lists...
; forget it.
(distribute-aux
(cdr yield)
lists ))
( else
(distribute~aux
(cdr yield)
(1ist (append (car lists)
(1ist (car yield)) )
(second lists)
(third 1lists) )))))
(let ( (redundant (absorbed? (head lists)
(third lists) )))
(cond ( redundant
(remove-head lists) )
( (and (not (redundant? (head lists)
(cdar lists) ))
(or (null? yield)
(all-starred? yield) ))
(head-to-max lists) )
( else
(distribute-aux yield lists) ))))
(let* ( (possibles (poss-children lists args))
(yield (harvest lists fO f1 possibles))
(newlists (distribute yield lists)) )
newlists ))
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3 L]

;; (FIND-DEDUCIBLES F) finds all of the arguments that are HH
;3 deducible from F = 1. For example: HH

;3 [1] (find-deducibles *(((b) (g) £) ((a) (g) £) (b a (f) g);;
;+ Deducible: F MM
+3 Deducible: G HH

(define (find-deducibles f)
(define (find-deducibles-aux f args)
(cond ( (null? args) ’())
( else
(cond ( (deducible? f (car args))
(princ "Deducible: ") (princ (car args))
(newline) ))
(find-deducibles-aux f (cdr args)) )))
(let* ( (args (find-args £)))
(find-deducibles-aux f args) ))

(DEDUCE-ALL F) prints all arguments deducible from F = 1, ;
along with their minimal determining subsets.

[ EEEEEEY .

.
’
.
4

L)
4
. R R N A N N R N I I R A I S S S N BN S SR S S N R B SR A ] IR I NI
] IR N R R S R RN RN N

L
.
L

-eo

(define (deduce-all f)
(define (deduce-all-aux f args)
(cond ( (null? args) ’())
( else
(cond ( (deducible? f (car args))
(princ "Deducible argument: ")
(princ (car args)) (newline)
(princ "Determining subsets: ") (newline)
(list-temms
(min-determining £ (car args)) )))
(deduce-all-aux f (cdr args)) )))
(let*x ( (args (find-args £)))
(deduce-all-aux f args) ))
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ooooooooooooooooooooooooooooooooooooooooooooooo

ve ..
L] )

;3 (DEDUCIBLE? F X) determinines if the argument X is 3
;; deducible from F = 1. .
M HH

IEEENEEEENEEEEEEEEEE EE SN EEEEEE R EEENE S F RN ENFEEEEEEEEEEEEREENENNEEEREES)

(define (deducible? f x)
(letx ( (£0 (divide £ (bar x)))
(f1 (divide f x))
(product (mult £0 £1)) )
(if (null? product)
#T
S OIDD))]

ooooooooooooooooooooooooooooooooooooooooooooooooooo .
’)),’)l”)));’;”l!””””) UTILITIES IEEEEEEEEEEEEEEEEEEEEEEEEE)

(define (second list)
(cadr list) )

(define (third list)
(caddr list) )

(define (head list)
(caar list) )




B.5 COST.S File

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

D)"’”"”,l)”)”’)”)”)””,”"’!’!)’”,’l”l)))”)),l”"’,

HH HH
HH C0OST MODULE :;
HH ;,

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

,’9))””11)’)))))"’,)’l))),”)””))”9.)’”,"””"”"’,’,)’

LR LR
;s This module contains procedures that assign a cost to a HH
;3 given Boolean SOP formula. Three possible choices are HH
;3 available. They are used by the DESIGN procedure in the ;;
;3 recursive optimization of digital circuits. H
’? >

$33ssssssissssssissssssss PROGRAM DETAILS ;355533issississsssiiss
13 FILE NAME: COST.S or COST.FSL '
s DESCRIPTION: Assign Cost to Boolean SOP Formula HH
13 AUTHORS: Frank M. Brown & Eric J. Knutson HH
HH . HH
++ DATE: 2 NOV 90 03
HH HH
+3 AUXILIARY FILES: From the BORIS System Software HH
M HH
HH TOOLS.FSL T
HH HH
;+ GETTING STARTED: To get started, load COST.FSL and H
HH TOOLS.FSL at the PC Scheme System prompt. ;;
HH then follow the instructions and/or HH
He examples provided below. '
i3 i
S S M R A R R R R R R R R R R E R I R R R R R R R
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;3 GATE-INPUT-COST accepts a Boolean formula F in a list-based ;;
;3 SOP form. It then calculates a gate-input cost by: MM
23 ’?
HH 1) Counting the number of literals in all of the HH
HH products if the product contains more than one. HH
HH 2) Adding the number of sums that are present to the HH
3 total found in Step 1. HH
Y i
;+ An example is shown below: HH
L] L]
HH [1] (gate-input-cost ’((x1 x2 x3) (x2 x3 (x4)) (x5))) HH
9; E IR
i 9 i
H ;;

(define (gate-input-cost f)
(if (= (length £f) 1)
(length (car £))
(+ (length £)
(length
(flatten
(remove-singletons £) )))))

P isiisaasiisiiaiiiissy GATE-INPUT-COSTL ;3533333i33i3sisiiii34
;3 This procedure is identical to GATE-INPUT-COST with the e
;3 exception that if F is a Boolean formula containing only a ;;
;3 single literal, then the cost would be 0. This compares ;;
i to a cost of 1 that would be produced by the COST HH
;3 procedure. An example is shown below: HH
i3 [1] (gate-input-costl ’((z1))) HH
o0 i
A A R A R R R R R R R F R R R R A R R R R R A
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(define (gate-input-costi f)
(if (= (length £) 1)

(if (null? (cdar £))
0
(length (car £)))

(+ (length £)

(length
(flatten
(remove-singletons £) }))))

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

e e ..
LR 1

13 GATE-COST accepts a Boolean formula F in a list-based SOP i

;s form. It then calculates a gate cost by: HH
HH 1) Counting the number of terms in the SOP formula HH
1 that contain more than one literal. HH
HH 2) Adding the number of sums that are present to the HH
HH total found in Step 1. ;
. ;

13 An example is shown below:
' 1
03 [1] (gate-cost ’((x1 x2 x3) (x2 x3 (x4)) (x5))) HH

’

3

(define (gate-cost f)
(cond ( (null? £)
0)
( (=1 (length £))
1)
(else
(+ 1 (length (remove-singletons f))) )))
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;3 This is an auxillary procedure used by the cost functions HH
;; above. It removes from a list of terms, those terms that ;;
;s contain only one literal. HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(define (remove-singletons f)
(cond ( (null? £)

Q)

( (qull? (cdar f))
(remove-singletons (cdr f)) )

(else
(cons (car f)

(remove-singletons (cdr £)) ))))
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B.6 SEARCH.S File

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

’; 3
HH SEARCH MODULE HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

),1"’D’9”,)””’l”””’)"”’)””””’DDD'!’D”’D,D)))’!””,

L] b
;7 The algorithms in this module are used in conjunction with ;;
;3 the DESIGN MODULE to search for the best recursive HH
;3 realization of a combinational logic ciruit. A M
;3 branch-and-bound search technique is used that always HH
;3 expands the node on the search tree with the smallest HK

;3 accumulated cost. A solution path is one that defines all ;;
;3 of the outputs, with the least accumulated cost. More than ;;
;; one solution path is possible. This search process uses H

?
;3 a queue to maintain the list of partial paths. 3
HH HH
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

3333siiissssisisisisisss PROGRAM DETAILS ;555553s553sss5533ssis3s4s
;3 FILE NAME: MDS.S or MDS.FSL HH
;+ DESCRIPTION: Branch-and-Bound Search Algorithms HH
;3 AUTHOR: Frank M. Brown i
HH HH
1+ DATE: 8 NOV 90 HH
;+ AUXILIARY FILES: From the BORIS System Software ;H
HH HH
He TOOLS.FSL HH
HH HH
;3 GETTING STARTED: To get started, load MDS.FSL and HH
HH TOOLS.FSL at the PC Scheme System Prompt. ;;
HH Next, follow the instructions and/or H
N examples provided with each of the H
H algorithms found below. HH
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oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

;3 SOLVE controls the branch-and-bound search process. It is
;3 called by (SOLVE QUEUE MDS OUTPUTS MAXCOST). QUEUE will

;3 used to maintain a list of partial paths through the search ;;

;s space, but is initialized to begin with. MDS represents a
;3 list of all of the MDSs, the output they are associated

; with, their SOP representation and their resulting cost.
;3 OUTPUTS simply represents the designated outputs for the
;s system. And finally, MAXCOST represents an upper bound on
;+ the accumulated cost that will be allowed to occur before
;3 the search process is terminated. SOLVE checks to ensure
;s that a number of conditions are met throughout the search
;3 process and detects when a solution is achieved. This

;s procedure is called by the DESIGN procedure in the

;s DESIGN.S file. An example is shown below:

; [1] (solve *((0 ))) *((£ 1 (((®))) §)

; (£ 2 (((®)) ((a))) a b)

; (g 1 (((£))) )

; (g 2 ((ab)) ab)) '(f g) 1000)
; (0)

; (2 (F24B))

HH (2 (G 2 A B))

(3 (F16) (G2AB))
F=@
G=AB

(3(F2aB) (G1F))
DONE

(define (solve queue mds outputs maxcost)
(cond ( (null? queue)
(newline)
'fail )
( (and (subset? outputs (cadar queue))
(= maxcost 1000) )
(nevline) (newline) (print-assignment (car queue))
(newline) (print-simplified-fcns (cddar queue))
(solve-cycle queue mds outputs (caar queue)) )
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( (and (not (subset? outputs (cadar queue)))
(< maxcost 1000) )
(solve-cycle queue mds outputs maxcost) )
( (and (subset? outputs (cadar queue))
(= maxcost (caar queue)) )
(newline) (print-assignment (car queue))
(solve-cycle queue mds outputs (caar queue)) )
( (< maxcost (caar queue))
(newline) (beep) (beep)
’done )
( else
(newline) (print-assignment (car queue))
(solve-cycle queue mds outputs 1000) )))

PRINT-ASSIGNMENT prints the current path being examined. HH
For example: HH

[1] (print-assignment (3 (f g) (£ 1 (((g))) g) ;
(g 2 ((a b)) ab)) ;
(3(F16) (6G24AB)) i

IR N R N A I A I I A N I R R R R R R N N N R R R R E R R ]
IEEEEEEEEEEEEEEEENEEENEEEENEEEREEEEEEEEEEEEEEE EEENENEE I EENEE

~e

(define (print-assignment assgn)

(define (extract-assignments mds-list)
(define (remove-fcn-part mds)
(cons (car mds)
(cons (cadr mds)
(cdddr mds) )))
(cond ( (null? mds-list)
Q)
( else
(cons (remove-fcn-part (car mds-list))
(extract-assignments (cdr mds-list)) ))))
(princ (cons (car assgn)
(extract-assignments (cddr assgn)) )))
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; + PRINT-SIMPLIFIED-FCNS extracts the solution from the queue ;;

;; and displays it. For example: HH
HH [1] (print-simplified-fens ’((f 1 (((g))) & HH
H (g 2 ((ab)) ab)) H
i F=6 i
HH G=AB HY

ooooooooooooooooooooooooooooooooooooooooooooooooooo R R E R
2222209999992 929 2939239992992 22 2999999292929 299929999999923992995932 %

(define (print-simplified-fcns assignment)
(cond ( (null? assignment)
0 )
( else
(princ * ") (princ (caar assignment)) (princ " = ")
(show-h (caddar assignment))
(print-simplified-fcns (cdr assignment)) )))

333333333333 SOLVE-CYCLE ;33555s3ssss55ss33ssisssssss
I L8 )
;s SOLVE-CYCLE expands the least-cost node and then passes the ;;
;3 new information on to SOLVE. SOLVE then checks to see if e
;3 a terminating condition exists. If not, SOLVE transfers M
;3 control back to SOLVE-CYCLE for further expansion. This N

; cyclic action continues until a solution or some other HY

; terminating condition is encountered. HH

we wo we we

1
S S R R R R R R R R R R R R R R R R R R R E R R R R R R R R R R R R AR R R R R R R R R R R R T
(define (solve-cycle queue mds outputs maxcost)
(letx ( (mother (car queue))

(kids (collect-children mother mds outputs)) )

(solve
(best-first
(insert-kids kids (cdr queue)) )

mds

outputs

maxcost )))
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2929229999232 99299992992232592223939399922399990992292992999929292952939)

(define (insert-kids kids others)
(cond ( (null? kids)

others )

( (member (car kids) others)
(insert-kids (cdr kids) others) )

( else
(cons (car kids)

(insert-kids (cdr kids) others) ))))

;3 (BEST-FIRST QUEUE) accepts a queue of partial paths through ;;
;+ the state-space. It returns the queue, re-arranged so that ;;
;3 the leading member has cost minimal in the queue. The cost ;;
;3 of a partial path is the first element in the list N
;s representing the partial path. HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

IR EEEEEEEEEEE R EEEEENEE RN EEEEEE R EEEEEEEEEEEEEEEEEEENIEEIEEEE)

(define (best-first queue)
(define (path-cost partial-path)
(car partial-path) )
(cond ( (null? queue) nil)
( else
(et ( (bf-cdr (best-first (cdr queue))) )
(cond ( (null? bf-cdr)
queue )
( (> (path-cost (car queue))
(path-cost (car bf-cdr)) )
(append bf-cdr (list (car queue))) )
| ( else
| (cons (car queue)

bf-cdr ))))))
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we we wae
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“e we woe we woe we we

we we we ws we

“e we woe we we we
wo w

; one of the outputs already assigned. For example:

It is called by (COLLECT-CHILDREN ASSGN MDS OUTPUTS) where ;;
OUTPUTS is a list of outputs to which arguments are to be ;;

assigned and MDS is a list of the minimal determining HH
subsets associated with each output. For example: HH
L]

QUTPUTS = (Z1 22 Z3) HH
MDS = ((21 (...) 5ADZ2) (21 7 (...) AD 23) HH

(zt 9 (...) ABCD) (224 (...) ¢21) i

(z2 12 (...) ABCD) (2210 (...) ACD 23) HH

(233 (...) BC) (235 (...) B 22)) g

...where (...) is an SOP formula. HE

ASSGN is an assignment-sequence, i.e., a list of the form

(PATH-COST ASSIGNED (OUT COST FCN ARG ARG ...)
(OUT COST FCN ARG ARG ...) ...).

representing a path in assignment-space. COST is the sum of
the individual function-costs, ASSIGNED is a list of

the outputs currently assigned, OUT is the name of an
output-variable to which arguments are being assigned, FCN
is the list-representation of an SOP formula, COST is the
gate-input cost of FCN, and ARG ARG ... are the arguments
of FCN. For example:

wo we we we we we we ws
¢ wWe we we we we we we

(13 (22 21) (224 (...) € 21) (Z1 9 (...) ABCD))

A child of an assignment.-sequence S is a one-step extension
of S, i.e., an assignment-sequence in which all of the
assignments in A are maintained and in which an additional
output variable, Zi, is assigned. The child is LEGAL if
every argument assigned to Zi is either a basic input or

(16 (23 2221) (Z33 (...) BC) (224 (...) C 21)
(Z1 9 (...) ABCD))

W Ve Ve We We We We wWe We we wWe we We we we wo
WO We We Vs Ve Ve We wWe wWe wWe we woe We wWs we w
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;3 This procedure returns a list of all legal children of the ;;
;3 partial assignment ASSGN. Each assignment in MDS is HH
;; examined to see if it is is part of a legal child of ASSGN; ;;
;3 if so, it is used to form 2 child of ASSGN; the child is HH
;3 added to the list of children to be returned by HH
;3 COLLECT-CHILDREN. HH

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

”",’)"’))’”’”’"’,DDD,’”’”l’9)”’)!"”),’,’,’,”’”’,’,”

(define (collect-children assgn mds outputs)
(cond ( (null? mds) nil)
( (not (illegal-child? (car mds) assgn outputs))
(cons (extended-assgn (car mds) assgn)
(collect-children assgn (cdr mds) outputs) ))
( else
(collect-children assgn (cdr mds) outputs) )))

;3 Given an assignment-sequence ASSGN and an output-list :
i+ OUTPUT, let ASSIGNED denote the outputs already assigned. ;
i3 An assignment MDS-ENTRY, e.g., (Z2 C 21), of arguments to ;;
1+ an output is illegal if ;
HY (a) the output has already been assigned or H
] (b) the argument-set is illegal. o
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R AN R R R R R R RN
(define (illegal-child? mds-entry assgn outputs)
(let ( (assigned (cadr assgn)) )
(cond ( (or (member (car mds-entry) assigned)
(illegal-arguments? (cdr mds-entry)
assigned
outputs ))
t N
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’ ’?
;3 ARGS is a list of arguments, ASSIGNED the list of outputs ;;
;+ already assigned, and OUTPUTS the list of all outputs to be ;;
;; assigned. We will allow an output Z to be an argument for ;
; + another output provided Z has already been assigned; we HH
;3 avoid feedback-loops, therefore, by allowing only HH
; "feed-forward" paths of outputs to outputs. Thus a member ;;
;+ of ARGS is illegal iff it is a member of OUTPUTS but not a ;;
;; member of ASSIGNED. ;
1

R EEEEEEEEEREX] ts s s e e 00 0000000000000 R R R R R R R R R R
IR EEEEEEEEEEEEEEEE R E N EEE R N E N NN R R ]

(define (illegal-arguments? args assigned outputs)
(cond ( (null? args) nil)
( (and (member (car args) outputs)
(not (member (car args) assigned)) )
t)
( else
(illegal-arguments? (cdr args) assigned outputs) )))

pyissssisssisisisisisssss EXTENDED-ASSGN ;335sissssssissssssssssss

;3 (EXTENDED-ASSGN MDS-ENTRY ASSGN) returns the extended ;

; assignment-sequence formed by introducing the assignment ;
; MDS-ENTRY into the assignment-sequence ASSGN. The tasks ;
; here are to update the cost, to augment the list of ;
; assigned outputs, and to introduce the new assignment. As ;
; noted in the discussion for COLLECT-CHILDREN, ASSGN is an ;;
; assignment-sequence, i.e., a list of the form HH
;
H

(PATH-COST ASSIGNED (OUT COST FCN ARG ARG ...)
(OUT COST FCN ARG ARG ...) ...).

1
; the output under consideration, ARG ARG ... are the inputs
; to be used, FCN is a subminimal SOP formula realizing Z

)
MDS-ENTRY has the form (Z COST FCN ARG ARG ...), where Z is ;;
H
from ARG ARG ..., and COST is the gate-input cost of FCN. :
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(define (extended-assgn mds-entry assgn)
(define (insert-mds mds-entry others)
(cond ( (null? others)
(1ist mds-entry) )
( (lower-literal? (car mds-entry) (caar others))
(cons mds-entry others) )
( else
(cons (car others)
(insert-mds mds-entry (cdr others)) ))))
(cons (+ (car assgn) (cadr mds-entry)) ;; Add the cost of the
;3 new mds-entry,
(cons (sort-term (cons (car mds-entry) ;; introduce the
(cadr assgn) )) ;; new output,
(insert-mds mds-entry ;; and introduce
(cddr assgn) )))) ;; the new mds-
13 entry itself.
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Frank M. Brown & Eric J. Knutson
?

Circuit Specifications

DATA
1 NOV 90
H

;
i
DATA.S

o .
LR
xR
LI ]
.
.
.
.
.
]

[1] (design cktl ’(f g))
Additional circuit specifications may be added to this

it can be used with the DESIGN function as follows:
database as they are encountered.

H

H

H

FILE NAME
DESCRIPTION

; This module defines a variety of circuit specifications.
AUTHORS
E
;

;3 Once the circuit specification is defined, one needs only

;3 refer to its designated name when using it.

B.7 DATA.S File

- om o .- oo -t oa
on s on on oo P=) o
IS o o .- IS o
ten en s ea e IS em ta sm sm em em sa sa e s cm ta om tm sm s sm om om
e sn s sm ea en em s ea sa sta tm em s sm ea tam sm cm sm em sm sa sa ea em oa




(define cktil

'("f = a’ + b'M

"S =ab") )

(define ckt2

Y(ME = x? + y A

=xy: + Zz0

g
h

= x? +ya + z21) )

(define ckt3

+a’b+bc"

= ab’

)(llzi

"z2 = a’ b’ + a b"
z3 = b? + ¢?") )

(define ckt4

‘(' = a p+ qn

"y = a P"
uy =p+a’ "
nz = q") )

(define ckt5

1(y = Q' r + t"

"y = a p+ qn
"y = a P"
l‘y = p + a) rll
g = qll) )
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oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(define wsu-ckt
'("zil=ab+ac’+bd + ¢ Q"
"22 = b’ c + a’> c d"
"23 = b’ c") )

oooooooooooooooooooooooooooo

(define example ("d = ab+ ac+ b c"

"s=alb!c"
"y=abs’® +a’d’ sn))

(define sample
Y("z1 = x1? x2 x3 + x1 x2? x3’ + x1 x2’ x3 + x1 x2 x3’"
"z2 = x1? x2 x3 + xI x2? x3 + x1 x2 x3°"
123 = x1’ x2? x37 + x1’ x2 x3 + x1 x2° x3 + x1 x2 x3’") )

(define ex-951
("z1 = x1 + x2° x3? + x2 x3"
"z2 = x1’ x2 + x1’ x3"
"z3 = x1? x2 x3") )

° 4P 0PI EEIILOEOTEEIEINEDLES R N N N R R N N N RN
IR E RS RN EEEEEEEEEEEEEEEEEEE) BCDT03 IEEEEEEEEEEREREEEEEREEEEEEEEE ]

(define bcdto3
'"'w=a+bc+bd"
y =D’ c+b’d+bc d
lly:cd+b)d+bc’ d,ll
=4') )

(define manoil
'("fi = a’bc’+a’b>c+ab’c’+abdbc
"f2=ab+ac+bch))
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(define half-add
’("S = x? y +x y’n
e = x yu) )

oooooooooooooooooooooooooo

(define nontabi
,(llq’j+qk)=s+q)t+qr’ t)ll
"WW=rs+rt+sth)

oooooooooooooooooooo [ R R € 0 4 6900000859600 00000 09300840
P22 IIIIDITIILNINNININRIRYDYODYY NDNTAB2 2922325922992 2982232322000

(define nontab?2
Y(vz1 + 22 = x1 x2? x3") )
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B.8 TOOLS.S File

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

] ]
Y TOOLS MODULE 3
HH HH

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooo

’)””"”,)”",,’)’!D”)"”)”)’)l’i”9”’).”")!)’)’),’D”"

2 )
;3 This program provides procedures for processing Boolean HH
;3 sum-of-products (SOP) formulas. The representation assumed ;;
;s for an SOP formula is a list of representations of the HH
;3 terms in the formula. A term is represented as a list of HH

’

;7 representations of the literals in the term. A literal X is ;;
;; represented by the symbol X (X may be an arbitrarily H
;; complex symbol); a literal X’ is represented by the list HH

13 (X). Thus the Boolasan formula e
HH HH
H ax + bci’x’y + y’z? + dz + xy’ HH
;3 1s represented by the list H
HH HH
HH ((ax) (b (c) (x) y) ((y) (2)) (d=2) (x(¥)) ) ). (¥ ;;
HH HH
1+ If the symbol FOO has value "ax + bc’x’y + y’z? + dz + xy’" ;3
;3 then (PARSE F00) also returns the list (x). A string 1
;+ accepted by PARSE is not restricted to be an SOP formula H
;; (see the discussion accompanying the definition of PARSE); ;;
;s however, PARSE returns an equivalent SOP formula of the e
;; form shown in (*). Let Ft,...,Fn, Gi,...,Gn be represen- ;;
i+ tations for SOP formulas. Then the system H
HH HH
HH F1 = G1 e
HH F2 = G2 HH
;; e ;;
HH Fn = Gn HH
;+ is represented by the list HE
H ( (eq F1 G1) (eq F2 G2) .. (eq Fn Gn) ) . s
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;3 A logical inclusion F =< G (i.e., F implies G) appearing in ;;

;; a system is represented by the sub-list (le F G), read HH
;3 "F is less than or equal to G." Thus the system HH
HH HE
i a’b’c? = x’yz H
i3 ab + ac = x'y’ +y'z2’ H
S a’b + b’c =< xy + x’z H
i ac + bc + a’c’ =< x’ + yz

HH ab’ =< x’ + 2’

33

;3 is represented by the list

e we wo wes wo

3]
’?

HH ( (eq (((a) (b) ()N (((x) y (20 ) i
i (eq ((a b) (a c)) (((x) (y)) ((y) (=2))) ) s
HH (e (((a) b) ((b) ) ((x y) ((x) 2))) 3
33 (e ((a c) (b ) ((a) (e))) (((x)) (y 2z)) ) HH
HH (e ((a (b)) (Cx)) (20 ) N . HH
;+ A friendlier representation, based on strings, is N
;3 recognized: HH
;; (system 0|a)b’c’ " eq llx’yz " ;;
;; Mab + ac i eq le)y’ + y)z’ 1] :;
;; lla}b + b’c n le llxy + x’z ] ;;
;’ llac + bc + a’c)ll le I|x’ + yz 1" ;;
;; llab) u le llx’ + z’ it ) . ;;

R R R R R R R EE R R E RS R R R N R T R ]
I RSN EEEEEEEEEEEEENEENEEN REDUCE .’”’”’)'0)”;”"”".”’

This function reduces a system of equations and inclusions
to an SOP formula F such that F = 0 is equivalent to the
original system. The system may have one of two forms:

FORM1: (system "a + b’" eq "a b+ (tom ! sam)"
"x? ¥ y + bill’" 1le ‘“mary"
“z“ eq |la) ! tom" )

FORM2: ( (eq ((x)) ((tom bill) (x (y))))
(e (((u) v)) (((x) y) (mary x))) )

we We We We wWe Ve We Ne We Ws We wWe We we

®e ®o wo Woe Ws We we We we we we we
we W6 We We wWe We we wWe we We W we Ve oo
we W8 We ®e we We We Ws We WO We We wo o

R R R R R R R X E IR R 6066090506 0006005 0680080006800 00980000
R R X X R R R R A E S E E R E R R S RN SRR A RN R SRR EEEEEEREEEEREEEEEE]
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(define (reduce system)
(if (equal? (car system) ’system)
(parse-reduce (cdr system))
(plain-reduce system) ))

(define (parse-reduce sys)

(cond (

(

(

(

(null? sys)
0 )
(and (string? (car sys))
(string? (caddr sys))
(equal? (cadr sys) ’eq ) )
(append (xor (parse (car sys))
(parse (caddr sys)) ) .
(parse-reduce (cdddr sys)) ))
(and (string? (car sys))
(string? (caddr sys))
(equal? (cadr sys) ’le ) )
(append (mult (parse (car sys))
(complement (parse (caddr sys))) )
(parse-reduce (cdddr sys)) ))
else
(princ "Syntax-error encountered in PARSE-REDUCE.")
(newline) )))

(define (plain-reduce sys)

(cond (
(

(null? sys) nil)

(eq? (caar sys) ’eq)

(append (xor (cadar sys) (caddar sys))
(reduce (cdr sys)) ))

(eq? (caar sys) ’le)

(append (mult (cadar sys) (complement (caddar sys)))
(reduce (cdr sys)) ))

(eq? (caar sys) ’ge)

(append (mult (caddar sys) (complement (cadar sys)))
(reduce (cdr sys)) ))

else

(writeln "Error in PLAIN-REDUCE procedure.") )))
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ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

,)’,)’)”’D’)”’”l’)")”’”””,’)9”)’)0”))’)”D”””l”)”’

HH BASIC BOOLEAN OPERATORS HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

")’l’l0””!"”’)””””)9’)””’l)')’.)"”)’)!)””)”D”’,’

) E 2 ]
;3 The following is a collection of Boolean operators designed ;;
;3 to work on SOP formulas. They include multiplication HH
;; addition, addition, complement, Exclusive-Or, Exclusive-Nor ;;
;; and others. HY
HH HH
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R A R R A )

[EX] e ADD ooooo . EEEEEEEEEEEEEE] s e 000
)’,"”,"”””"”, ,S"l” ”””)l”””,”"”",D’,”

we we
e we

add f1 £2) returns the logical OR, in SOP form, of two SOP
ormulas, Elementary simplification-housekeeping is
erformed on the result.

e we we w
QY Hho~
~e we

we weo we

(define (add f1 £2)
(cond ( (null? £1) £2)
( (absorbed? (car f1) £2)
(add (cdr f1) £2) )
( else
(add (cdr f1)
(cons (car f1)
(remove-supersets (car £f1) £2) )))))

(define (sum f1 £2) :: Alternative notation.
(add f£1 £2) )

(define (remove-supersets term f)
(cond ( (null? f£) nil)
( (subset? term (car f))
(remove-supersets term (cdr £)) )
( else
(cons (car £)
(remove-supersets term (cdr £)) ))))
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ooooooooooooooooooooooooooooooooooooooooooooooooooooo

b '
;3 (complement f) returns the complement, in SOP form, of the ;;
;; SOP formula f. The recursive rule 1
) s
H £2 = x2(£/x?) + x(£/x)’ HH
HH M
i3 is implemented, where x is any argument of f. Thus each HH
;s term of the formula for £’ will contain x’ or x as a HH
;3 literal. HN
HH HH

I E R EEEEEEX] ® 6000000000000 sGsOTOEES RIS S I SR IR SR RPN SR N )
I AR EEEEEENEEENEEREEEEE R N N R RN ]

(define (complement f)
(cond ((null? £) (list nil))

((member nil f) nil)

(else

(let* ((arg (first-arg f))
(narg (bar arg))
(£0  (divide f narg))
(f1  (divide f arg))
(comp0 (complement £O))
(compl (complement £1)) )
(append (prefix narg comp0)

(prefix arg compl) )))))

R R R R R R R R R\ S R S R S S S S R S S R S A R S S R R R R R S
HH HH
;3 (mult £ g) returns the logical AND, in SOP form, of the HH
;3 SOP formulas £ and g. The recursive rule HH
HH HH
i3 fxg=x"(f/x" % g/x?) + x (£/x * g/x) HH
1 HH
;3 is implemented, where x is any argument appearing in f. HH
HH HH
R R R R R R R R R R AR R R R R A A R R S HHHHHHHHHHHHHHHHHH N M S
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(define (mult f g)
(cond ((null? f) nil)
((null? g) nil)
((member nil £) g)
((member nil g) £)
(else
(letx ((arg (first-arg £))
(narg (bar arg))
(f0  (divide f narg))
(f1  (divide f arg))
(g0 (divide g narg))
(g1 (divide g arg))
(product0 (mult £0 g0))
(producti (mult f1 g1)) )
(append (prefix narg productO)
(prefix arg productl) )))))

(define (multiply f g) ;3 Alternative notation.

(mult £ g) )
(define (prod f g) ;3 Alternative notation.
(mult £ g) )
(define (product f g) ;; Alternative notation.
(mult £ g) )
P isisisaiassssasisisassssss MU-PRODUCT ;3s5i5s55s33ss5isisi3s33333s

;+ The mu-product of two SOP formulas is their texrm-by-term ;
;3 product. ‘s

(define (muprod f g)
(cond ( (null? £) nil)
( else
(append (muprod-tf (car f) g)
(muprod (cdr £) g) ))))




(define (uprod-tf term f)
(cond ( (null? term) f)
( (null? £)  nil)
( else
(let ( (prod (muprod-tt term (car £))))
(cond ( (equal? prod 0)
(muprod-tf term (cdr f£)) )
(else
(cons prod
(muprod-tf term (cdr £)) )))))))

(define (muprod-tt ti t2)
(cond ( (null? t1) t2)
( (member (bar (car t1)) t2)
0)
( else
(let ( (rest (muprod-tt (cdr t1) t2)))
(cond ( (equal? rest 0)
0)
( (member (car t1) t2)
rest )
( else
(cons (car ti1) rest) ))))))
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If F is a Boolean SOP formula and x is a literal, then f/x
is represented in the following equation:

f=(f/x)x+r
vhere r is the remainder. In other words, f£/x is the

result of removing an x from all of the terms that contain
an x and deleting all of the terms that don’t contain an x.

-e
-e
-eo
we
-
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we
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-
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-
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-
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we
-e
-e
-eo

(dofine (divide f x)
(cond ((null? £) nil)
((member (bar x) (car £))
(divide (cdr £) x) )
(else (cons (remove x (car f))
(divide (cdr £) x) ))))
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9 ’;
;+ This operation divides a Boolean SOP formula by a term. The ;;
;3 result remains in a SOP form HH
LR 4 ’;

. I EEX]
I EEEEEEEEEEENEEEEEEEEEEEEEEEE EEE R R S EEEEEE NS ENEEREEEEEEEEEIEEEEER]

(define (divide-by-term f term)
(cond ( (null? term) f)
( else
(divide (divide-by-term f (cdr term))
(car term) ))))

oooooooooooooooooooooooooooo

. .
) L]

;3 (factor £ x) returns the result of factoring a literal x HH
;3 from the Boolean SOP formula f. The result remains in HH
33 SOP form. HH
HH HH
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R
(define (factor f x)
(cond ( (null? £) nil)
( (member x (car f))
(cons (remove x (car f))
(factor (cdr f) x) ))
( else
(factor (cdr f) x) )))
N R R R I R R I ) S R R R S S S R S R
HH HH
;3 (XOR F G) returns the logical EXCLUSIVE-OR, in SOP form, of ;;
;; the SOP formulas F and G. The recursive rule H
HH HH
HE f XOR g = x’(£/x’ XOR g/x’) + x (£f/x XOR g/x) ]
HH HH
;3 is implemented, where x is any argument appearing in f. HH
HE HH
AR R R R R I R R R R R R R R R R R R R R R R R R R R R R R R R R R R R
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(define (xor £ g)
(cond ((null? £) g)

((null? g) £)

((member nil £) (complement g))

((member nil g) (complement f))

(else

(letx ((arg (first-arg f))
(narg (bar arg))
(f0  (divide f narg))
(f1  (divide f arg))
(g0 (divide g narg))
(g1 (divide g arg))
(xor0 (xor £0 go0))
(xor1 (xor f1 g1)) )

(append (prefix narg xor0) (prefix arg xori) )))))

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

;; ;‘
;3 (XNOR F G) returns the logical EXCLUSIVE-NOR, in SOP form, ;;
13 OF the SOP formulas F and G. The recursive rule HH

.. [ ]
L] *?

; f XNOR g = x?(£/x’ XNOR g/x’) + x (£/x XNOR g/x) HH

ve we

is implemented, where x is any argument appearing in f. HH

L)
r?

(define (xnor i g)
(cond ((null? £) (complement g))
((null? g) (complement £))
((member nil f) g)
((member nil g) f)
(else
(let* ((arg (first-arg f))
(narg (bar arg))
(f0  (divide f narg))
(f1  (divide f arg))
(g0 (divide g narg))
(gt (divide g arg))
(xnor0 (xnor £0 g0))
(xnor1 (xnor f1 g1)) )
(append (prefix narg xnor0)
(prefix arg xnori) )))))
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ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

HH H
HH CANONICAL FORM OPERATORS HH

ooooooooooo o0 00000 ess 0000000 BCF 0000000000000 0 00000000
IEEEEEEEEEEEEEEEEEEEEEEEEENFEEN] 2229929955929 95 2299299299332

) L
;3 (BCF F) returns the Blake canonical form of F, where F is a ;;
+; SOP formula. The interior list-format is returned. HH
;3 (LISTBCF F) returns BCF(F) in conveniently-readable form. ;;
;3 Both procedures are based on the relation HH
) s
33 BCF(f) = ABS([x’ + BCF(£/x)] # [x + BCF(£/x’)]) (1) HH
HH HH
;3 Where HH
’s HH
H -- ABS is an operator which removes absorbed terms; HH
H -~ f/u denotes the quotient of f with respect to u, H
s i.e., the result of making the substitution u = 1 HH
HH in £; and HH
HH -- # is the "mu-product" operator, indicating explicit ;;
HH term-by-term cross-multiplication. HH
HY HH
;3 When (1) is multiplied out, the result is HE
) t ]
;3 BCF(f) = ABS(x’BCFO + x BCF1 + PROD) (2) HH
LI 1
;3 where BCFO denotes BCF(f/x’), BCF1 denotes BCF(f/x ) and H

;3 PROD denotes BCFO # BCF1. The only absorptions possible
;; are (a) those within PROD and (b) absorptions of terms in
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1+ X'BCFO or x BCF1 by terms in PROD.
HH
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(define (bcf f)
(cond ( (null? £) £)
( (null? (edr £)) £)
( (member nil £) (list nil))
( else
(let ((arg (opposed-arg £)))
(cond ( (null? arg)
(unabsorb f) )
( else
(let* ( (narg (bar arg))
(f0  (divide f narg))
(f1  (divide £ arg))
(bcf0 (bef £0))
(bef1 (bef £1))
(prod (muprod bcfO bcfi))
(absprod (unabsorb prod))
(nf0 (absorb-rel bcf0 absprod))
(nfi (absorb-rel bcfi absprod)) )
(append (prefix narg nf0)
(prefix arg nf1)
absprod ))))))))

(define (listbcf f)
(list-terms (bcf £)) )

we
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;3 (BCF-SE F) returns BCF(F), making use of the method of
successive extraction.
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(define (bcf-se f)
(unabsorb
(bcf-se2 £ (opposed-args £)) ))

(define (bcf-se2 f arglist)
(cond ( (null? arglist) f)
( else
(bef-se2
(unabsordb
(append f (yield f (car arglist))) )
(cdr arglist) ))))
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; The "yield" of a function with respect to an argument is i

the set of consensuses formed by oppositions in that MM
argument. The factor-function permits factoring of the HH
function £ with respect to an argument x: f0 is the H
quotient wrt x’ of the terms in which x’ appears explicitly ;;
and f1 is defined similarly for x. HH

)
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(define (yield f arg)
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; function F with respect to the variables enumerated in the ;

(letx ( (narg (bar arg))
(£f0 (factor f narg))
(f1 (factor f arg)) )

(muprod 0 f£1) ))

SRR SRR RS H N Y N S S S SRR R R R S A S S S S R S
(MCF F LST) returns the minterm canonical form of the HH
list LST. Two examples are shown below:

[1] (show (mcf (parse "x1 z2'+ x2’z2 + x1°x2’z1 22'"))) ;
X1'X2'Z2 <-- The coefficient of the minterm X1'X2’ is ;
X17X2'21 21 + 22, H

X1 x2? H
X1 X2 22? H

[2) (show (mcf ’((a b (c) d (e)) (b c e) ((a) ¢ (d))) HH

"(abe))) i
A'B’C D’ b
A’B C D’ -
A'B CE i

ABCDE
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(define (mcf £ 1st)
(if (null? 1st)
f

(Qet* ( (arg (car 1lst))
(narg (bar arg))
(£f0 (submin (4ivide f narg)))
(f1 (submin (divide f arg))) )
(append (prefix narg (mcf fO (cdr 1st)))
(prefix arg (mcf £1 (cdr 1st))) ))))
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HH ABSORPTION OPERATORS HH
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;’ ;)
;3 (UNABSORB F) returns a subformula of F that contains no HH
;s terms that are absorbed by other terms in the subformula. ;;
HH HH
R R R R R A R R R R R R R R A R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R A

(define (unabsorb f)
(cond ( (null? £) nil)
( else
(insert-abs (car f)
(unabsorb (cdr £)) ))))

(define (insert-abs term f) ; Insert a term into an
(cond ( (null? £) (list term)) ; absorbed-out formula,
( (subset? term (car f)) ; and carry out all ab-

-

(insert-abs term (cdr £f)) ) ; sorptions on the result.
( (subset? (car f) term)

£)
( else

(cons (car f)
(insert-abs term (cdr £)) ))))
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;3 (ABSORB-REL F G) returns those terms of the SOP formula F ;;
;+ that are not absorbed by any term of the SOP formula G. K
HH HH
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(define (absorb-rel f g)
(cond ( (null? g) £)
( else
(absorb-rel (term-absorb f (car g)) (cdr g)) )))

(define (term-absorb f term)
(cond ( (null? £) nil)
( (subset? term (car f))
(term-absorb (cdr f) term) )
( else
(cons (car f) (term-absorb (cdr f) term)) )))

-
-
.
.
-
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Siissssisasssississsasss ABSORBED? s353s53sssssisisissrsisssssss

?
; ’
;3 (ABSORBED? TERM F) is a predicate returning TRUE in case H
;; TERM is absorbed by some term of the SOP formula F. HN
HH HH
R R R R R R A R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R A R R
(define (absorbed? term f)
(cond ((null? f) nil)

((subset? (car f) term) true)

(else

(absorbed? term (cdr £)) )))
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;3 (ECON F TERM) returns the conjunctive eliminant of F with ;;
;s respect to the arguments in TERM. HH
i HH
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(define (econ f term)
(simplify (econ2 f term)) )

(define (econ2 f term)
(cond ((null? £) f)

((member nil f) (list nil))

((null? term) f)

(else

(let* ((arg (car term))
(part (partition f arg))
(p (car part))
(@ (cadr part))
(r (caddr part))
(prod (mult p q)) )
(econ2 (append prod r) (cdr term)) ))))

piassisaiaiaiassaiaiiaiaisy BCON-BCF 33335issisiiissisiisisiiiiiis
HH HH
;; (ECON-BCF F TERM) returns the conjunctive eliminant of F HE
;3 with respect to the arguments in TERM, provided F is in HH
;; Blake canonical form. HH
HH HH
R R R R R R I R R R R R R R R R R R R R R R R R R R R R R R R B

(define (econ-bcf f term)
(residue f term) )
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H i
;+ (RESIDUE F TERM) returns all of the terms of F that do not ;;
;+ contain any argument appearing in TERM. This function pro- ;
i+ duces the conjunctive eliminant of F with respect to the ;
3 arguments in TERM in case f is in Blake canonical form. ;

.
) !
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(define (residue f term)
(cond ( (null? £) nil)
( (common-args? (car f) term)
(residue (cdr f) term) )
( else
(cons (car f)
(residue (cdr £) term) ))))

(define (common-args? termi term2)
(cond ( (null? term2) nil)
( (or (member (car term2) termi)
(member (bar (car term2)) termi) )

#t )

( (common-args? termi (cdr term2))
#t )

( else
(vriteln "Error in COMMON-ARGS? procedure") )))

AR R R S A S (o)) S S R R H R R R E R R A A
t 2 ] [ ]
;+ (PCON F ARGS) accepts a Blake canonical form, F, and a HH
++ list, ARGS, of arguments. The conjunctive projection of F ;;
;3 with respect to ARGS is returned. The terms of this HH
s projection are the prime implicants of F that involve only ;;
;1 arguments belonging to ARG, HH
HEH HY
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R A R R R R R A
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(define (pcon f args) ;3 T must be in BCF !
(cond ( (null? f£)
0 )
( (subset? (depolarize-term (car f)) args)
(cons (car f) (pcon (cdr f) args)) )
( else
(pcon (cdr £) args) )))

H ’
;3 (EDIS F TERM) returns the disjunctive eliminant of F with ;
; respect to the arguments in TERM. ;

IR EEEEEEEEEEEEEREEEEEEEEEEEEEEE RN 2 E EE R S EEE RN N E NN NN NN NN

(define (edis f term)
(cond ( (null? term) f)
( else
(edis (replace-by-one f (car term))
(cdr texrm) ))))

(define (replace-by-one f x)
(cond ( (null? £) nil)
( else
(cons (replace-term (car f) x)
(replace-by-one (cdr £) x) ))))

(define (replace-term term x)
(cond ( (null? term) nil)
( (or (equal? (car term) x)
(equal? (car term) (bar x)) )
(cdr term) )
( else
(cons (car term)
(replace-term (cdr term) x) ))))
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;3 (PDIS F ARGS) accepts an SOP formula, F, and a list, ARGS,
;3 of arguments. The disjunctive projection of F with respect
;3 to ARGS is returned. Each term of F undergoes modification
;3 to become a term of the returned projection. The modifica-
;3 tion consists of removing all literals in the term that do
;3 not belong to ARGS.

(define (pdis f args)
(if (null? f)
0
(cons (modify-term (car f) args)
(pdis (cdr £) args) )))

{define (modify-term term args)
(cond ( (null? term)
'0)
( (member (debar (car term)) args)
(cons (car term)
(modify-term (cdr term) args) ))
( else
(modify-term (cdr term) args) )))

(define (project fcn term)
(cond ( (null? fcn) nil)
( (subset? term (car fcn))
(cons (car fcn)
(project (cdr fcn) term) ))
( else
(project (cdr fcn) term) )))
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HH TAUTOLOGY CHECKERS 3
H HH
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;3 Given a Boolean SOP formula f, TAUT? checks to see if f HH
;3 represents a tautology. N
’; 1)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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(define (taut? f)
(cond ((wember () £f) true)
((null? £) nil)
(else
(taut? (econ f (list (first-arg £)))) )))

. R R R R R R R R EEE ) TAUT1 ooooooooooooooooooo R R R
’l””,”””””’)””’l)’ IEEEEEEEEENESEEEREREEREEEEEEE]

)

HH HH
;s This tautology checker uses Zakrevskii’s algorithm. It HH
;3 appears to be about as efficient as TAUT?. HH
HH HH
R R R R R R R R R A R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

(define (tauti? f)
(newline)
(list-terms f)
(cond ((member () f)
(princ “tautology")
true)
((get-singleton f)
(princ "singleton-term: ") (newline)
(princ (car (get-singleton f))) (newline)
(let ((arg (car (get-singleton £))))
(taut1? (divide f (bar arg))) ))
((opposed-arg f)
(princ "opposed argument: ")
(princ (opposed-arg f))
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(let* ((x (opposed-arg f))
(xbar (bar x))
(£f0 (divide f xbar))
(f1 (divide f x)) )
(and (taut1? £0) (tauti? £1)) ))
(else nil) ))

(define (get-singleton f)
(cond ((null? £) nil)
((null? (cdar £)) (car £))
(else (get-singleton (cdr £))) ))

(define (partition f x)
(let* ( (arg (debar x))
(narg (bar arg)) )
(partitioni f arg narg) ))

(define (partitioni f arg narg)
(cond ((null? f) (list nil nil nil))
((member narg (car f))
(let ((next (partitioni (cdr f) arg narg)))
(cons (cons (remove narg (car f))
(car next) )
(cdr next) )))
((member arg (car £))°
(let ((next (partitioni (cdr f) arg narg)))
(list (car next)
(cons (remove arg (car £))
(cadr next) )
(caddr next) )))
(else
(let ((next (partitioni (cdr f) arg narg)))
(1ist (car next)
(cadr next)
(cons (car f)
(caddr next) ))))))
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HH ’
13 (SUBSET? T1 T2) returns TRUE in case every member of the HH
;3 1list T1 is also a member of the list T2.

.o
)2

(define (subset? t1 t2)
(cond ((null? ti) true)
((and (member (car t1) t2)
(subset? (cdr t1) t2) ))
(else nil) ))

Prissaaaaiisasasaassisssss UNION sissssssssansssssissssssisisss
NN HH
i+ Returns the union of LIST1 and LIST2 assuming that LIST2 HH
i+ has no duplicate elements, HH
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R
(define (union listi list2)
(cond ( (null? listi) list2)
( (member (car listi) list?2)
(union (cdr listl) list2) )
( else
(union (cdr listi) (cons (car listi) list2)) )))
tiissisisisisiiisiseiisss DIFFERENCE ;iiisisisssissississisiisiis
HH HH
;; (DIFFERENCE S T) returns the set S - T, i.e., every member ;;
;3 of list S that is not a member of list T. 3
& '
R R R R R R R R S R R R R R R R R E R R R R R R R R R R R R R R R R R R
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(define (difference si s2)
(cond ( (null? si1)

Q)

( (member (car si) s2)
(difference (cdr si) s2) )

( else
(cons (car s1)

(difference (cdr si) s2) ))))

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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H RANGES 0
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siisasasiasassssasasssssisss RANGE 5iissssisssssississssisisiss
2 e
;3 (RANGE F ARG) accepts an SOP formula F and an argument ARG. ;;
;3 The function returns the range (L0 HI) bounding ARG, given ;;
;3 the equation F = 1. LO and HI are defined as follows: HH
HH HH
HH L0 = (£f/zi’)? * (f/zi) HH
5 HI = (£/zi?)? + (f/zi) HH
T &
;7 HI is returned in Blake canonical form, to enable sub- HH
;s sequent conjuntive eliminants to be calculated efficiently. ;;
HH HH
R SR R R R R R R R R R R R R R D R S S R R R R R R S SR PR R R R R R R R R SRR

(define (range f arg)
(let* ( (farg*x (complement (divide f (list arg))))
(farg (divide f arg))
(1o (simplify (mult farg** farg)))
(hi (bef (add farg** farg))) )
(1ist lo hi) ))
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;3 (ELIM-ARGS RANGE ARGS) accepts a RANGE of the form (LO HI), ;;

;3 in which LO and HI are bounding SOP formulas and a list

;3 ARGS of arguments. If the arguments in ARGS can be elimi-
;3 nated, to produce a new range (NEW-LO NEW-HI), the new

;; range is returned; otherwise, ’() is returned. The initial

;3 upper bound, HI, must be in Blake canonical form.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

.
”

.o
?
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(define (elim-args range args)
(let ( (new-lo (simplify (edis (car range) args)))
(new-hi (econ-bcf (cadr range) args)) )
(if (formally-included? new-lo new-hi)
(1list new-lo new-hi)

QN

(define (project-range range args)
(et ( (new-lo (simplify (pdis (car range) args)))
(new~hi (pcon (cadr range) args)) )
(if (formally-included? new-lo new-hi)
(list new-lo new-hi)

QN

(define (get-range ckt output args)
(project-range (range (complement
(parse ckt) )
output )
args ))

(define (show-lo range)
(list-terms (car range)) )

(define (show-hi range)
(list-terms (cadr range)) )

(define (show-range range)

(princ "Lower bound:") (newline)
(show-lo range)

(princ "Upper bound:") (newline)
(show-hi range) )
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;3 This procedure is a slight modification of BCF-ITER, which ;;
;s implements the method of iterated consensus. It differs 3
;s from BCF-ITER only in the procedure “consensus." The idea ;;
;3 here is to generate only consensus-terms which absorb at HH
;+ least one of their parents. The principal utility of this HN
;s procedure is to clean up functions like MULT and ECON 33
;3 (which uses MULT) whose recursive definition causes them to ;;
;3 produce large numbers of terms that differ in only one H
33 literal. HH

ooooooooooooo R R R R R E R R R R R R R R R R E E E R I I A A N B RS B N I B S BN N ST )
IEEEEEEEEEEEEEEEEEEEEEE R EEEEEEEEEEEEEEEEEEEEEEENENEENEEREEEIEIEENEREN]

(define (simplify f)
(unabsorb
(simplify2 nil £) ))

(define (simplify2 left right)
(cond ( (null? right) left)
( (null? left)
(simplify2 (list (car right))
(cdr right) ))
( (absorbed? (car right) left)
(simplify2 left (cdr right) ))
( else
(let ((newcons (sweep (car right) left)))
(cond ( (equal? newcons '(()))
(0))
( (equal? (car newcons) ’drop-term)
(simplify2 left
(append (cadr newcons)
(cdr right) )))
( else
(simplify2 (cons (car right) left)
(append (cadr newcons)

(cdr right) ))))))))
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(define (sweep term f)
(sweep2 term nil f) )

(define (sweep2 term acc partf)
(cond ( (null? partf) (list ’ok acc))
( else
(let ((consens (consensus term (car partf))))
(cond ( (null? consens)
(sweep2 term acc (cdr partf)) )
( (equal? comsens ’(()))
(0) )
( (subset? consens term)
(list ’drop-term .
(cons consens acc) ))
( else
(sweep2 term (cons consens acc)

(cdr partf) )))))))

LR
;s p and q are terms. The consensus of p and q is returned HH
i+ only if the consensus absorbs at least one of its parents. ;;
i H

[N I I I S R IR S BN B A A )
IEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEE S EEEEEEEEEEEEEENEREEEEEEEEEEEEEE]

(define (consensus p q)
(et ( (consens (consensus2 0 p q)) )
(cond ( (equal? consens ’no-dice)
Q)
( (null? consens)
(M)
( (or (subset? consens p)
(subset? consens q) )
consens )

( else () ))))
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(define (consensus2 count p acc)
(cond ( (= count 0)
(cond ( (null? p)

’no-dice )

( (member (bar (car p)) acc)
(consensus2 1 (cdr p)

(remove (bar (car p)) acc) ))

( (member (car p) acc)
(consensus2 0 (edr p) acc) )

( else
(consensus2 0 (cdr p) (cons (car p) acc)) )))

( else
(cond ( (null? p)
acc )
( (member (bar (car p)) acc)
’no-dice )
( (member (car p) acc) -
(consensus2 1 (cdr p) acc) )
( else
(consensus2 1 (cdr p) (cons (car p) acc)) )))))
RN R R R RS R R R R R R R R R R R R R R R R R R RS RS R R RS S R S
*? '
H MINIMIZATION HH

LIiiiiiiiiiiiii ceesirenss Cerestesrees o Ceseseens vees

1
;3 These functions are concerned with the minimization of SOP ;
;3 formulas. One idea to pursue, discussed by Gaines, is to ;
; look at implication-relations among the prime implicants of ;
;+ a formula. We can do that by setting up a system of H
;+ equations of the form A = first PI, B = second PI, etc., R
;3 reducing the equations to the form F = 0, eliminating the ;
i+ xyz’s from that equation, and then isolating all terms ;
;3 having just a single unbarred literal, e.g. A’B C’'D’, That ;
;3 term can be given the interpretation ;
;3 "B is included in A + C + D", :

»
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M HH
;3 This function removes all terms from an SOP formula that 1
;; have other than one unbarred literal. HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2399229529299 92999599992992992392999 9929993395993 99999339399939233)93)

(define (get-impliers f)
(bcf (get-impliersi £)) )

(define (get-impliersi f)
(cond ((null? £) nil)
((bad-barcount? (car f))
(get-impliersi (cdr f)) )
(else
(cons (car f)
(get-impliersi (cdr £)) ))))

(define (bad-barcount? term)
(let ((count (count-unbars term)))
(cond ((= count 1) nil)
(else t) )))

(define (count-unbars term)
(cond ((null? term) 0)
((atom? (car term))
(+ 1 (count-unbars (cdr term))) )
(else
(count-unbars (cdr term)) )))

(define (irr-subsets poslubs)
(cond ( (null? poslubs) nil)
( (null? (cdr poslubs)) (complement poslubs))
( else
(unabsorb
(expand-out (car poslubs)
(irr-subsets (cdr poslubs)) )))))

(define (expand-out term f)
(cond ( (null? term) nil)
( else
(append (expand-arg-f (car term) f)
(expand-out (cdr term) £) ))))
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(define (expand-arg-f x f)
(cond ( (null? £) nil)
( (member x (car f))
(cons (car £f)
(expand-arg-f x (cdr £)) ))

( else
(cons (cons x (car £))
(expand-arg-f x (cdr £)) ))))

(define (pos-lubs f)
(cond ( (null? £) nil)
( else
(let ( (pos-term (pos-term-lub (car £))))
(cond ( (null? pos-term)
(pos-lubs (cdr £)) )
( else
(cons pos-term
(pos-lubs (cdr £)) )))IN))

(define (pos-term-lub term)
(cond ( (null? term) nil)
( (atom? (car term))
(cons (car term)
(pos-term-lub (cdr term)) ))
( else
(pos-term-lub (cdr term)) )))

MY HH
++ (ALL-IRREDUNDANT SYS F ARGLIST) returns clauses of the form ;;
39y F===>A+B+ ..., wvhere A, B, ... are names assigned to ;;
;3 prime implicants. SYS is the name of a system of equations ;;

;3 or inclusions defining the problem, F is the neme of the e
;+ function and ARGLIST is a list of argument-names H
;; (e.g., X, ¥, ...) to be eliminated. A typical form for e
s3 SYS is HH
HH ( Qe ((£)) ((w (x) (M) ((x) (y) 2)) ) HH
HH (eq ((a1)) (((w) (x) 2)) ) i
HH (eq ((a2)) ((wx 2)) ) HH
g (eq ((a3)) (((y) z)) ) i
HH (eq ((a4)) ((w (x) (2))) ) HH
HH (eq ((a8)) ((w (x) (¥ ) 3
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;3 in which the first clause expresses f =< lower bound (oddly ;;
;3 enough) and ai,...,a5 are the prime implicants of the upper ;;
;3 bound. The returned clauses correspond to the irredundant ;;
;3 formulas for F, HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(define (all-irredundant sys f arglist)
(list-clauses
(match-antecedents (bcf (econ (reduce sys) arglist))

(list £) )))

si3333sassiasaiiisiis ey MATCH-ANTECEDENTS ;;5555335333535353333330s
P 1
1+ (MATCH-ANTECEDENTS F TERM) returns all terms in F whose 3
;3 positive sub-terms match TERM. This enables all clauses HH
13 to be returned whose left-hand sides are the same as TERM. ;;
HH HH
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R
(define (match-antecedents f antecedent)
(cond ( (null? £) nil)
( (equal-terms? (car (segregate (car £)))
antecedent )
(cons (car f)
(match-antecedents (cdr f) antecedent) ))
( else
(match-antecedents (cdr f) antecedent) )))
Pisisaaasiisissasisss sy SUBMINIMIZATION ;333353555553353333330033333
12 '
;; (SUBMIN F) returns a sub-minimal formula representing the ;;
+; SOP formula F. i
1 HY
R R A R R R R R R R R R R R R R R R R R R R R R A A

(define (submin f)
(make-irredundant (bef £)) )
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oooooooooooooooooooooooooooooooooooooooooooooo

;3 (MAKE-IRREDUNDANT F) returns an irredundant subformula of HH
;3 the SOP formula F. .

o
PR 4 LI ]

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(define (make-irredundant f)
(make-irredundant* nil (biggest-first £)) )

(define (make-irredundant* front back)
;33 (princ front) (newline) (princ back) (newline) (newline)
(cond ( (null? back) front)
( (included-term? (car back)
(append front (cdr back)) )
(make-irredundant* front (cdr back)) )
( else
(make-irredundant* (cons (car back) front) (cdr back)) )))

(define (included-term? term f)
(taut? (divide-by-term f term)) )

Pidisisisasiessssassssss SUBMIN-INTERVAL ;iiiisiisiiiisissisiiis
HH ;
; (SUBMIN-~INTERVAL RANGE) returns a subminimal formula for :
; a function in the interval specified by RANGE = (LO HI). ;
; HI must be in Blake canonical form.

we we woe we weo

R R R R R R R R I R N R X R T E R R R R E R R R R R R .
I NSRS N RN EE RN I A A R AR AR IR I N AR B O % BN BN Ok BN 2% )

(define (submin-interval range) 13 HI MUST BE IN BCF!
(submin-lohi (car range) (cadr range)) )

tiisiasisssiisisassassasss SUBMIN=DC ;3sssssssssisiisssssisasiiis
:; (SUBMIN-DC DO-CARES DONT-CARES) specifies the interval by ;;
;3 "do-care" and "dont-care! formulas. HH
HH HH
N S S S I R

(define (submin-dc do-cares dont-cares)
(submin-lohi do-cares
(add do-cares dont-cares) ))




(define (submin-lohi lo hi)
(irr-inter* (complement lo)
(biggest-first hi)
nil ))

(define (irr-inter* lobar rem acc)
(cond ( (null? rem) acc)
( (taut? (add (add lobar acc)
(cdr rem) ))
(irr-inter* lobar (cdr rem) acc) )
( else
(irr-inter* lobar (cdr rem) (cons (car rem) acc) ))))

(define (biggest-first f)
(cond ( (null? £) nil)
( (null? (cdr £)) )
( else
(l1et ((sortcdr (biggest-first (cdr £))) )
(cond ( (< (length (car £))
(length (car sortcdr)) )
(cons (car sortcdr)
(biggest-first
(cons (car f)
(cdr sortcdr) )J))
( else
(cons (car f)

sortcdr )))))))
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oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

”)D’)l)))”"D”)”)””’)’)’))”’)”’D’)””))”D’))”")’)’))’

i HE
HH MISCELLANEOUS FUNCTIONS HH
H )i

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ssisssssssissssssssssss FORMALLY-INCLUDED ;535355335335303385353343
” ),
;; (FORMALLY-INCLUDED? G F) returns TRUE in case the SOP '3

;; formula G is formally included in the sop formula F, i.e., ;;
;3 in case every term of G is a superset of some term in F. If ;;
;3 F is in Blake canonical form, then FORMALLY-INCLUDED? is HH
;; the same as INCLUDED?. HH

-

oooooooooooooooooooooooooooooooooooooooooooooo

(define (formally-included? g f)
(define (term-included? term f)
(if (null? f)
Q)
(or (subset? (car f) term)
(term-included? term (cdr £)) )))
(or (null? g)
(and (term-included? (car g) £)
(formally-included? (cdr g) £) )))

(define (equal-terms? termi term2)
(and (subset? terml term2)
(subset? term2 termi) ))

(define (flatten 1lst)
(cond ( (null? 1lst) nil)
( (atom? (car lst))
(cons (car 1lst)
(flatten (cdr 1st)) ))
( else
(append (flatten (car 1lst))
(flatten (cdr 1st)) ))))

B-97




oooooooooooooooooooooooooooooooooooooooooooooooooooooo

;; (FIND-ARGS F) returns a sorted list of all of the ;
;+ arguments appearing in the SOP formula F. HH

2292929229929 9292999339999 2 9999229339999 9229999239599 299929272 )

(define (find-args f)
(sort-term
(undup
(flatten £) )))

(define (beep)
(princ (ascii->symbol 7)) )

1isisissississsssssassssss DEPOLARIZE 55is5ssisssississssiisiiiis
HH HH
;7 (DEPOLARIZE F) returns F, with all complemented literals HH
;; uncomplemented. Example: HH
i i 3
i3 [1] (depolarize ’((a (b) d) ((c) (d) £) (e (£)))) HH
H HH
HH ((ABD) (CDF) (EF)) s
HH HH

[ .o . [ EEEX] IR
I R R EEEEE R EEEE R EEE E R EEE SRR RS EEEEEEEEEREEEERENIEEENIEEIEIENIEEEIEIEEEEE RN S

(define (depolarize f)
(cond ( (null? £) nil)
( else
(cons (depolarize-term (car f))
(depolarize (cdr £)) ))))

(define (depolarize-term term)
(cond ( (null? term) nil)
( (atom? (car term))
(cons (car term)
(depolarize-term (cdr term)) ))
( else
(cons (caar term)
(depolarize-term (cdr term)) ))))
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(define (debar literal)
(cond ((atom? literal) literal)
(else (bar literal)) ))

(define (opposed-args f)
(list-opposed (get-literals f)) )

3333333vssssssississsissss LIST-0PPOSED ;55533553533553333333333333
HH HH
;3 (LIST-OPPOSED I.ST) operates on a list of literals, presumed ;;
;s to have no duplicates, returning a list of unbarred HH
;; variables, one variable for each each opposed pair in the HH
;3 original list. HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

I EEEEEEEEEEENESEREEEEEEREREEEEEEE SR E R EEEEEEEEEEREREEREEEENEEEE ]

(define (list-opposed lst)
(cond ( (null? 1st) nil)
( (member (bar (car 1lst)) (cdr 1st))
(cons (debar (car 1lst))
(list-opposed (cdr 1st)) ))
( else
(list-opposed (cdr 1st)) )))

........... SARG sisisistssasassssssesisenss
s3ssassssssiasiaisiissss OPPOSED-ARG 53333355353335353835353333343
. .
2 L]

;; (OPPOSED-ARG F) returns an argument that is opposed in F, HH

;3 if one exists, otherwise, it returns nil. An argument is H
;; opposed in F if the argument appears uncomplemented in one ;;
;3 term of F and complemented in another. HH

e
LR

I E R EEEEEEEEEEEEEEEEEXE] L) . R R R R R R
IR R S R E R SRR R EEE R R EEE

(define (opposed-arg f)
(cond ( (null? £) nil)
( (null? (cdr £)) nil)
( (member nil f) nil)
( else
(make-letter
(seek-opposed (get-literals £)) ))))
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(define (seek-opposed args)
(cond ( (null? args) nil)
( (null? (cdr args)) nil)
( (member (bar (car args)) (cdr args))
(car args) )
( else
(seek-opposed (cdr args)) )))

(define (make-letter literal)
(cond ( (atom? literal) literal)
( else
(bar literal) )))

ssissiasssssasssssesitssss GET-LITERALS ;5535s53s0iss0sssii33533s
HH HH
;3 (GET-LITERALS F) collects in a list all of the literals HH
;3 explicit in SOP formula F. Duplicates are excluded. HH
;3 An example is shown below: HH
HH HH
HH [1] (get-literals ’((a (b) d) ((c) (d) £) (e (£2))) HH
H HH
HH (D (B) AF (D) (C) (F) ™) HH
HH HH
I A R e R R R R R R S R R R R R AR R

(define (get-literals f)
(cond ( (null? f£) nil)
( else
(union (car f) (get-literals (cdr £))) )))

R R R R I R R E R R R R R RS A I EE R EXEEER]
0’”””’)’);)DI””)D’I’) FIRST—ARG IEEEEEEEEEREREREEEEREEERE]

. we

;
; Return, uncomplemented, the first argument encountered in
; the function F.

we Wo we ws we
- we -

(define (first-arg f)
(cond ((null? £) nil)
((member nil f) nil)
(else
(debar (car (car £))) )))
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XS

R R R R E R R
IEEEEEEEEEEEEEERE)

Return a list of all of the arguments in F.

e ea
LY

(define (get-args f)

(undup (flatten £)) )

L]
L]

;s Returns a list of all of the arguments in F that do not

belong to the set ARGS.

.
»

(define (other-args f args)

(difference (get-args f) args) )

en oo ea
e em om

Remove one occurrence of element X from list LST.

(define (remove x lst)

(cond ((null? 1st) nil)

(cdr 1st))

((equal? (car lst) x)
(else

‘~ar 1st)

(con+

(remove x (cdr 1lst)) ))))

om om om
om oem oa

Remove duplicate elements from a list.

en oo oa
on om om
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(define (undup 1st)
(cond ( (null? 1st)
0
( (member (car 1st) (cdr 1lst))
(undup (cdr 1st)) )
( else
(cons (car 1st) (undup (cdr 1st))) )))

ooooooooooooooooo s 400000000 9000690000000 00000e800000000000

IEEEEEEEEEEEEREEEENENEIEENENEN] pR’EFIx 2929992990223 222290%299%3%2) 2

s &
i3 Prefix each tern in the formula f by the literal x. HH
i HH

(define (prefix x f)
(cond ((null? £) nil)
(else
(cons (cons x (car £))
(prefix x (cdr £)) ))))

AR A S R S R S A S S A T A S S A E R R S A R SR S
;; Complement (bar) a literal x. Thus (BAR TOM) returns (TOM) ;;
;3 and (BAR (TOM)) returns TOM. s
b T
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R E R R R R R R A R R I R
(define (bar x)
(cond ((atom? x) (list x))
(else (car x)) ))

siriassisssisisssisssiss LABEL-AND-REDUCE ;33iis3sssiisssissssiis
1 HH
;7 (LABEL-AND-REDUCE F) sets each term of F equal to a label, ;;
i3 using GENSYM, and reduces the resulting system of equations.;;
;+ An example is shown below: HH
3 [1] (label-and-reduce ’((a b) ((b) ¢))) HH
i ( ((Go) A B) (GO (A)) (Go A (B)) i

¥ ((61) (B €) (Gt (B) (©)) (G1B) ) '

.
’
49 s e s s 0000000 S e s e s s 0L R R R R R I EEEEX] 400000060 earen e e
IEE SRR N R R R R AR R E SR E N EEEE RS NN RN RN NN
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(define (label-and-reduce f)
(cond ( (null? f) nil)
( else
(append (xor (list (list (gensym))) (list (car f)))
(label-and-reduce (cdr £)) ))))

Piasiiiaiaiiaiaiaiiiiisiisy SUBSTITUTE 53353353555535353505355333343
i i
;3 (SUBSTITUTE F X G) substitutes the function f for the HH
;3 argument x in the function g. HH
L] L]

(define (substitute f x g) :-
(econ (append (xor f (list (list x))) g) (list x)) )

............. T
IR EEEEEEEEEEEEEE R R R N NN N NN N NN N BN
.. .
1] t
~y
HH DISPLAY FORMULA HH
. *
] i ]

ooooooo ST e e r0er s 000 [ X EX] R R R R R R R R R E R E Y
IAREEEREERENENENENIEEEEREENE]

H HH
i+ The following procedures provide a variety of display HH
;3 formats for SOP formulas. HH
i H
R A R R R R R R R R R R R R R R R R R R R R R A R R R R R R R R R R R R R R I R R R R

)
HH HH
;3 (SHOW F) produces a display, listed vertically, of the H
;3 terms in the SOP formula F. The argument-names are sorted N
;1 in each term. HH
HH HH
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

(define (show fcn)
(list-terms fcn) )
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sisassassssasaisissisasisssss SHOW-H 555555355305303835353533335353
HH HH
;; (SHOW-H F) produces a horizontal display of the terms in HH
;3 the SOP formula F. The terms are connected with plus-signs. ;;
;3 As in SHOW, the argument-names are sorted in each term. HH

(define (show-h fcn)
(cond ( (member nil fcn)
(princ "1") (newline) )
( (null? fcn)
(princ "0") (newline) )
( else
(show-h-aux fcn) )))

(define (show-h-aux fcn)
(cond ( (null? fcn)

(newline) )

( (null? (cdr fcen))
(write-term (sort-term (car fcn)))
(newline) )

(else
(vrite-term (sort-term (car fcn)))
(princ "y n)
(show-h-aux (cdr fcn)) )))

(define (list-terms fcn)
(cond ( (member nil fcn)
(princ "1") (newline) )
( (null? fcn)
(princ "0") (newline) )
( else
(list-terms-aux fcn) )))

(define (list-terms-aux fcn)
(cond ( (null? fcn)
(newline) )
(else
(write-term (sort-term (car fcn)))
(newline)
(list-terms-aux (cdr fcn)) )))
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(define (write-term term)
(cond ( (null? term)
()

( (atom? (car term))
(princ (car term)) (princ " ")
(write-term (cdr term)) )

( else
(princ (car (car term))) (princ "’")
(write-term (cdr term)) )))

(define (sort-term term)
(cond ((null? term) nil)
((null? (cdr term)) term)
(else
(Let ((sort-cdr (sort-term (cdr term))))
(cond ((lower-literal? (car term)
(car sort-cdr) )
(cons (car term) sort-cdr) )
(else
(cons (car sort-cdr)
(sort-term {(cons (car term)
(cdr sort-cdr)

)

(define (lower-literal? x y)
(lower-symbol? (debar x) (debar y)) )

(define (lower-symbol? x y)
(let ((stringx (symbol->string x))
(stringy (symbol->string y)) )
(cond ( (string<? stringx stringy) true)
(else nil) )))

(define (list-clauses fcn)
(cond ((member nil fcn) (1list nil) )
((null? fcn)

(newline))
(else
(write-clause (car fcn))
(list-clauses (cdr fcn)) )))
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(define (write-clause term)
(let ((partition (segregate term)))
(vrite-lhs (sort-term (car partition)))
(princ LI n)
(vrite-rhs (sort-term (cadr partition)))
(newline) ))

(define (write-lhs term)
(cond ((null? term) (princ "1 "))
(else (write-leftargs term)) ))

(define (write-rhs term)
(cond ((null? term) (princ "O"))
(else (write-rightargs term)) ))

(define (write-leftargs term)
(cond ( (null? term) t)
( else (princ (car term))
(princ " u)
(vrite-leftargs (cdr term)) )))

(define (write-rightargs term)
(cond ( (null? term) t)
( (null? (cdr term))
(princ (car term)) )
( else (princ (car term))
(princ oy n)
(write-rightargs (cdr term)) )))
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oooooooooooooooooooooooooooooooooooooooooooooooooooooo

t ) ’

;; (SEGREGATE TERM) returns a set of the form (POS NEG), in HH
;3 which POS is a list comprising all of the uncomplemented HH
;3 variables in TERM and NEG comprises all of the comple- HH
;3 mented variables. Both POS and NEG consist of uncomple- HH
;3 mented literals. HH

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ¢ s e 0000
I EEEEEEEEEEEEEEEEEEEEEEEEE RSN EEEEEEEEEE RN EEREEEEEEE R R EEEE ]

(define (segregate term)
(cond ( (null? term)
(1ist nil nil) )
( (atom? (car term))
(list (cons (car term)
(car (segregate (cdr term))) )
(cadr (segregate (cdr term))) ))
( else
(1ist (car (segregate (cdr term)))
(cons (caar term)
(cadr (segregate (cdr term))) )))))
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B.9 NEW_DSGN.S File

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2223929325990 9 9929322229392 399 9939992993993 999399829593932)3)

H H
M DESIGN SYSTEM WITH A MODIFIED COST CALCULATION PROCESS ;;

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2259533395229 2322333593523999 9999923339939 999222999993209299399992)

HH HH
;3 The current optimizations system DESIGN.S calculates all of ;;
;3 the costs of the MDSs before proceeding with the search. HH

;3 If the search process arrives at a solution before a given ;;
;3 node is examined, the effort to calculate the cost of the ;;
;+ MDS corresponding to that node is wasted. This file HH
;3 contains slightly modified algorithms from the DESIGN.S H
;3 file and the SEARCH.S file. They contribute to a modified ;;
;3 optimization process that delays the cost calculations ;
;3 until a given node is examined. Once the cost for a given ;;
;3 MDS is calculated, it is stored using a MEMOIZE procedure 33
;3 so that it will not have to be calculated again,

[ 3]

1
- .y
LR ] LR}
[ R RN s s 00 et s e e (BRI I NI S S 000059000 0000000 PP EEN OGS
2222022292299 2200202299590 9 2909 NNIINNNBINNNNNNINSDNINNNNYY

3333333333ss3ssssss5 s PROGRAM DETAILS ;55335533380 3ssssssss3sss
ié i
;3 FILE NAME: NEW_DSGN.S or NEW_DSGN.FSL 3
+; DESCRIPTION: A Modified Circuit Optimization System 3
i H
;3 AUTHOR: Eric J. Knutson H
HH HH
13 DATE: 7 NOV 90 :s
M HH
;3 AUXILLARY FILES: From the BORIS System Software HH
HH HH
S TABULAR.FSL SEARCH.FSL i
H PARSE.FSL TOOLS.FSL N
H MDS.FSL COST.FSL i
o DESIGN.FSL DATA.S HA
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;3 GETTING STARTED: To get started, load NEW_DSGN.FSL and all ;;

HH of the auxiliary files at the PC Scheme ;;
HH System prompt. Then follow the HH
HH instructions and/or examples provided HH
HH with some of the algorithms below. HH

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

.................. A, ceeres
sissssissississsvssssssssss NEW-DESIGN ;55355305355 s835333s35333333

;s The optimization of a specific circuit is initiated by an ;;
;; input of the form (NEW-DESIGN CIRCUIT OUTPUTS) where oA
;3 CIRCUIT represents the circuit specification and OUTPUTS HH
; represents the designated circuit outputs. An example is ;;
;; shown below: H

;3 [1] (new-design CKT1 '(f g h)) HH

(define (new-design circuit outputs)
(define (new-design-fcn circuit f outputs)
(newline) (princ "Function:") (newline)
(list-terms f)
(newline) (princ " Calculating The Range For Each Output")
(newline) (newline)
(store-ranges f outputs)
(let ( (mds (out-mds-listsi f outputs)) )
(solvel ’((0 ())) mds outputs 1000) ))
(newline)
(princ "* Parsing and Reduction of Specification")
(newline) (newline)
(let ( (spec (simplify (complement (parse-design circuit)))))
(princ "» Checking To See If opecification Is Tabular: ")
(if (tabular-spec? spec outputs)
(begin (princ "PASSED!") (newline)
(new-design-fcn circuit spec outputs) )
(begin (princ "FAILED!") (newline) (newline)
(princ "* Converting To A Tabular Form.")
(newline)
(new-design-fcn circuit
(make-tabular-spec spec outputs)
outputs) ))))
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;3 This is an auxiliary procedure, called by NEW_DESIGN, that
;3 stores a range corresponding to each of the outputs.
;3 range is used to find a reduced, SOP formula composed soley ;;
; of arguments contained in the MDS.
; cost associated with each MDS can be determined.
; procedure is called by (STORE-RANGES F OUTPUTS)
; where F is the parsed specification of the circuit in

; normal form (F = 1) and OUTPUTS represents the designated

From this formula, the

ooooooooooooooooooooooooooooooooooooooooo

LIS ]

..
LR
* .
t R
LR}
]
9
L)
L8 ]
.o
e
[
LR

.o
LR

oooooooooooooooo

(define (store-ranges f outputs)
(cond ( (null? outputs) )

(memo-range £ (car outputs))
(store-ranges f (cdr outputs)) )))

oooooooooooooooooooo

ooooooo

(MEMO-RANGE F Z) calculates the range of an output Z, given
; a parsed specification F in normal form.
checks through a table to see if that range has already
; been calculated for the given output Z.
; simply retrives it from a table.
calculates it,

MEMO-RANGE first

If it has, it
If it has not, it

MEMOIZE accepts a procedure PROC as an argument and returns
another procedure which is a memoized version of PROC.

In this case MEMOIZE is used to create a memoized version
This technique is described in "Scheme and the
Art of Programming," by G. Springer and D. Friedman (93).

-
ws We we woe we ws we we
we we we ws ws we

we we




(define (memoize proc)

(define lookup
(lambda (obj table success-proc failure-proc)
(letrec ((lookup (lambda (table)
(if (null? table)
(failure-proc)
(let ((pr (car table)))
(if (equal? (car pr) obj)
(success~-proc pr)
(lookup (cdr table)) ))))))
(lookup table))))
(let ((table *()))
(lambda (function arg)
(lookup arg
table
cdr
(lambda ()
(let ((val (proc function arg)))
(set! table (cons (cons arg val)
table)) val ))))))

(define memo-range (memoize range))

P isaaiaiasiiiasiisiiiss OUT-MDS-LISTSL 33335353issiiiissisiiiiis

[3
’
.
?

.
’
.
’

(3

3

I3
)

(X3

This is identical to the OUT-MDS-LIST procedure found in
DESIGN.S, with cne noteable exception; the SOP formula
composed from the arguments in the MDS and the associated

cost is not calculated at this point. Using the same
example used by OUT-MDS-LIST, this procedure returns

[1] (out-mds-1listsl *(((f) b a g) (£ (a) (g)) ((b) £ (g)))

(fg))
((FOQOG (FGOABY(GOQF) (Fo( AB)) .

000000000000 .o

[ . X EEEEEEEEEEEEREX] 90 60909 600NN IGIRIRGIOITOEEIEOEEIEIOETSOTS
IEE SRR SN E SRR NN ENE RN EE RN E R NN R RN A IR A A BN I I O ]
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(define (out-mds-listsi f outputs)
(define (out-mds-lists-auxli f outputs)
(cond ( (null? outputs) nil)
( else
(let* ( (z (car outputs))
(arg-lists (min-determining f z))
(arg-lists* (zero-costs arg-lists)) )
(princ z) (princ * ")
(princ arg-lists) (newline)
(append
(splice z arg-lists*)
(out-mds-lists-auxl £ (cdr outputs)) )))))
(princ “Minimal Determining Subsets:") (newline)
(out-mds-lists-auxl f outputs) )

Tisiisisassisasississssssy ZERD-COSTS j5:5353ss3530is3is3ss3issss
i

i+ This is an auxiliary procedure called by OUT-MDS-LISTS1

;3 that accepts a list of MDSs and returns a list with the

;s SOP formula :.id cost initialized. For example:

HH

i [1] (zero-costs '((g) (a b)) )

i (06 (0 AB)

. -

?
IR E AR EEEE R RN N] I EEEER (K3 .o R R EEREEE .
»

. A R NN .. (] (R N]
IR R R R RN R RN I N N

(define (zero-costs arg-lists)
(if (null? arg-lists)
Q)
(cons (cons 0 (cons () (car arg-lists)))
(zero-costs (cdr arg-lists)) )))

psisisssssssitsssss SOLVEL and SOLVE-CYCLEL ;3;5:33533353333334s
;

; These procedures are identical to SOLVE and SOLVE-CYCLE
; found in SEARCH.S.
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(define (solvel queue mds outputs maxcost)
(cond ( (null? queue)
(newline)
’fail )
( (and (subset? outputs (cadar queue))
(= maxcost 1000) )
(newline) (newline) (print-assignment (car queue))
(newline) (print-simplified-fcns (cddar queue))
(solve-cyclel queue mds outputs (caar queue)) )
( (and (not (subset? outputs (cadar queue)))
(< maxcost 1000) )
(solve-cyclel queue mds outputs maxcost) )
( (and (subset? outputs (cadar queue))
(= maxcost (caar queue)) )
(newline) (print-assignment (car queue))
(solve-cyclel queue mds outputs (caar queue)) )
( (< maxcost (caar queue))
(newline)
done )
( else
(newline) (print-assignment (car queue))
(solve-cyclel queue mds outputs 1000) )))

(define (solve-cyclel queue mds outputs maxcost)
(let* ( (mother (car queue))
(kids (collect-childreni mother mds outputs)) )
(solvel
(best-first
(insert-kids kids (cdr queue)) )
mds
outputs
maxcost )))

s533333333333s3303s3ss COLLECT-CHILDRENY ;3;3353s5353s3s3sisissss

L

; This procedure is similiar to COLLECT-CHILDREN found in the
+3 SEARCH.S file. It differs in that, when the children are
;3 collected, minimized SOP formulas and a corresponding

;3 cost are assigned to each.

e we we we ws o
¢ ws we we we g
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(define (collect-childreni assgn mds outputs)
(let* ( (z (caar mds))
(child (car mds))
(one-mds (cdddar mds)) )
(cond ( (nvll? mds) nil)

( (not (illegal-child? child assgn outputs))

(cons (extended-assgn
(memo-child-cost z one-mds) assgn)
(collect-childrenl assgn (cdr mds) outputs) ))

( else

(collect-childrenl assgn (cdr mds) outputs) ))))

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

;3 This is the procedure that actually calculates the SOP HH
;+ formula and cost associated with each MDS. It accepts as ;;
;3 its inputs an output Z and a MDS. Given Z, it retrieves HH
;3 the previously stored range that corresponds to that output.;;
;3 With the range, MDS and Z, all of the necessary informa- o
; tion can be calculated. An example is shown below: HH

; [1] (child-cost ’'f ’(a b)) s
;3 (F 2 (((B)) ((A))) A B)

(define (child-cost z one-mds)
(define (node-cost range arg)
(letx ( (new-range (project-range range arg))
(min-formula (submin-interval new-range))
(new-cost (gate-input-cost min-formula)) )
(cons new-cost
(cons min-formula
arg ))))

(cons z (node-cost (memo-range ’() z) one-mds )))
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2 )

;3 (MEMO-CHILD-COST Z ONE-MDS) checks through a table to see ;;

;3 if the SOP formula and cost have already been calculated HH
;3 for a node given by an output Z and a minimal determining ;;
;s subset ONE-MDS. If the information exists, it retrieves HH

;3 the data. If the information does not exist, it calls the ;;
;3 procedure CHILD-COST to calculate the SOP formula and cost ;;
;3 associated with a given MDS. This information is then HH
;3 stored and returned. HH

;s As with MEMOIZE, MEMOIZE1 accepts a prcedure PROC as an HH
;; argument and returns another procedure which is a memoized ;;
;3 version of PROC. In this casec MEMOIZE!1 is used to produce ;;
+3 memoized version of CHILD-COST. HN

oooooooooooooooooooooooooooo I R I R I I I A AR I AT AP B RS P R A}
IEEEEEEEEEEEEEEEEEEEE N EEE R N N N RN RN NI

(define (memoizel proc)
(define lookupi
(lambda (obj set table success-proc failure-proc)
(letrec ((lookupl (lambda (table)
(if (null? table)
(failure-proc)
(let ((pr (car table)))
(if (and (equal? (car pr) obj)
(equal? (cadr pr) set) )
(success-proc pr)
(lookupi (cdr table)) ))))))
(lookupi table))))
(let ((table *()))
(lambda (arg set)
(lookupi arg set table cddr
(lambda ()
(et ((val (proc arg set)))
(set! table (cons (cons arg (cons set val))

table)) val ))))))

(define memo-child-cost (memoizel child-cost))
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B.10  NON_MDS.S File

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

HH B
HH NON-MINIMAL DETERMINING SUBSET DESIGN SYSTEM HH

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2992229222252 2 2993922992 3952992 3299392299929 999399289829529093239999

;3 This file contains some modified design procedures that ;
;; enable one to optimize a design using NON-MINIMAL Deter- ;;
;3 mining Subsets. It has been shown that the use of minimal ;;
;; determining subsets does not always produce an optimal HH
;3 solution. These modifications cause the introduction of ;;
;; additional outputs into the minimal determining subsets. ;;
;3 The hope is that the introduction of these outputs will HH

]

;3 lead one to a better solution. The drawback is that HH
;3 because it introduces additional modified subsets, the N
7+ design is slowed down considerably. HH
); ’;

ooooo

p33333333i3ssissasasss PROGRAM DETAILS ;iiiisissssssissiiiisiiiss
;3 FILE NAME: NON_MDS.S or NON_MDS.FSL HH
1+ DESCRIPTION: Circuit Optimization System Using HH
HH Non-Minimal Determining Subsets HH
HH HH
;1 AUTHOR: Eric J. Knutson HH
;3 DATE: 28 SEP 90 HH
HH HH
++ AUXILLARY FILES: From the BORIS System Software HH
0 TOOLS.FSL COST.FSL HH
HH DESIGN.FSL SEARCH.FSL HH
H PARSE.FSL DATA.S e
HE MDS.FSL TABULAR.FSL HH
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;3 GETTING STARTED: To get started, load non_mds.s and all of ;;
HA the auxillary files at the PC Scheme M
HH System Prompt. Then follow the examples ;;
HH and guidance provided below. HH
R R R R R R R R R R F R R R R R RS R R SN
333335333335553355353355 NON-MDS-DESIGN ;;;55555555555333333333335
29 ;;
;; (NON-MDS-DESIGN CIRCUIT OUTPUTS) finds the least-cost HH

7+ assignment of arguments to the outputs listed in OUTPUTS. ;;
;s CIRCUIT is a system of equations that specify the desired ;;
;3 Dbehavior of the circuit. As an example, the input format ;;

;3 Tor a logic circuit is shown below: HH
1N HH
;3 [1] (non-mds-design ’("w = a p + q" :s
g “x = a p" HH
3 lly=pa,+rll i:
;; llz - q.ll) ’(V x y Z) ) ;;

(define (non-mds-design circuit outputs)
(define (design-fcni f outputs)
(newline) (princ "Function:") (newline)
(list-terms f)
(let ( (mds (out-mds-listsi f outputs)) )
(solve ?((0 ())) mds outputs 1000) ))
(newline)
(princ "x Parsing Specification and Reducing to Normal Form")
(newline) (newline)
(let ( (spec (simplify (complement (parse-design circuit)))))
(princ "* Checking To See If Specification Is Tabular: ")
(if (tabular-spec? spec outputs)
(begin
(princ "PASSED!") (newline)
(design-fcnl spec outputs) )
(begin
(princ "FAILED!") (newline) (newline)
(princ "* Converting To A Tabular Form.")
(newline)
(design-fcni (make-tabular-spec spec outputs)
outputs) ))))
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;3 Given a parsed specification in normal form (F = 1),

; (OUT-MDS-LISTS F OUTPUTS) finds the minimal determining
;; subsets, and associated cost, for each of the ouputs in
;; OUTPUTS. An example is shown below:

we ws we

we we

we

;5 [1] (out-mds-listsi >(((£f) b a g) (f (a) (g)) ((b) £ (g)))

e We we We W wWe ws Wi we
we

i (fg)) H
35 C(F1(6))) G (F1(((G)) ABG ;
3 (F2 (((B)) (())) AB) (G1 (((ANF i
5 (G1 (((F))) ABF) (62 ((AB)) AB)) HH
;; The format of the output is ;;
;; ( (OUTPUT COST FORM MDS) (OUTPUT COST FORM MDS) ... ) ;;

;3 where OUTPUT represents an argument found in OUTPUTS, MDS HH
;3 represents the arguments of one of OUTPUT’s minimal HH
;3 determining subsets, FORM represents a minimal, SOP formula ;;
;3 that produces OUTPUT using the arguments found in MDS, and ;;
;7 COST represents the gate-input cost associated with FORM. ;;

;3 This function will only display the MDSs corresponding to a ;;
;3 given output. To display all of the information concerning ;;

3+ MDSs, including their associated cost and SOP formulas, HH
;3 place a semi-colon in front of the OPT1 lines below and HH
;3 remove the semi-colon from in front of the OPT2 line. HH

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

)””!l”9!)”l”’l”””'!l”””ll”’l’)"’)’l”’))””’)’)”’!
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(define (out-mds-listsi f outputs)
(define (out-mds-lists-auxi f outputs outsave)
(cond ( (null? outputs) nil)
( else
(let* ( (2 (car outputs))
(mds-lists (min-determining f z))
(new-lists (undup (mds-expand mds-lists z
outsave)))
(mds-1ists* (attach-costs f z new-lists)) )
(princ z) (princ * ") ;; OPT1
(princ new-lists) (newline) s; OPT1
; (display-cost new-lists* z) (newline) ;; OPT2
(append
(splice z mds-lists*)
(out-mds-lists-auxi f (cdr outputs)
outsave) )))))
(princ "Minimal Determining Subsets:") (newline)
(out-mds-lists~auxi f outputs outputs) )

oooooooooooooooooooooooooooooooooooooooooooooooooooo

;3 The auxillary procedure (MDS-EXPAND MDS Z OUTPUTS) accepts ;;
;3 a list MDS of minimal determining subsets for the output Z ;;

;; and the list of OUTPUTS for the circuit. It returns an HH
;; expanded set of subsets which are no longer necessarily HH
;; minimal. New sets are created by adding one additional HH
;3 output. An example is illustrated below: N

;3 [1] (mds-expand ’((X1 X2 X3) (X2 X3 21)) 23 *(21 22 23))

;3 ((X1 X2 X3 Z1)(X1 X2 X3 22) (X1 X2 X3) (X2 X3 21 Z2) (X2 X3 Z1));

(] .
r? »
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(define (mds-expand mds z outputs)
(define (mds-expand-aux mis outputs new-ds)
(define (make-new-ds minset outputs result)
(cond ( (null? outputs) .
(append result (list minset)) )
( (member (car outputs) minset)
(make-new-ds minset (cdr outputs) result) )
(else
(make-new-ds minset (cdr outputs)
(append result
(1ist (sort-term (cons (car outputs)
minset)))) ))))
(cond ( (null? mds) new-ds) .
(else
(append new-ds minset)
(mds-expand-aux
(cdr mds)
outputs
(append new-ds
(make-new-ds (car mds) outputs ’())) ))))
(mds-expand-aux mds (remove z outputs) ’()) )
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